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Abstract

The impact of migration is not just a function of how many people migrate, but where they come
from. Migrants carry region-specific identities, traits and skills that shape outcomes in receiving
areas. In rapidly urbanizing African cities, the composition of migrants may play a negative role, as
ethnic and linguistic divisions drive conflict and counteract classic agglomeration forces. This paper
disentangles the effects of migrant flows and migrant composition on productivity in destinations. I
build a subnational panel of internal migrant flows across Africa and develop a nonlinear shift-share
instrument that identifies shocks to both levels and the birthplace composition of migrants. Using
exogenous variation from climate, commodity and conflict shocks, I identify changes to the size
and composition of migrants. I find that cities that receive migrants from more diverse birthplaces
have lower short-run growth, but experience long-run urbanization benefits. The effects of migrant
composition are heterogeneous, with more diverse cities experiencing higher ethnic conflict, but
also higher rates of structural transformation. The methods proposed have broad applications to

identifying nonlinear effects of migration, when relative group sizes matter for outcomes.
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1 Introduction

Measuring the impact of migrant workers is usually done in levels. The size of migrant inflows, or
the average level of their skill, changes labor demand and supply, prices and traffic. Past work has
argued that as the flow of migrants increases, they can raise the productivity of destinations through
agglommeration effects. An increase in the raw number of people in a city stimulates competition
and generates new ideas. If agglomeration effects exist, then the level of migrant flows can scale-up
city populations and in turn productivity growth (Glaeser and Gottlieb, 2009). But to achieve these
effects, migrants have to interact with each other and with the local population. These interactions
might be smooth or difficult, and the particular skills, backgrounds and social networks that migrants
bring with them may be more or less complementary. The complementarity of migrant workers is
a function of their composition; the relative sizes of different groups at destination. In this paper I
disentangle these two effects, density and diversity, in the context of African rural-urban migration.
I find that both increasing migrant labor size and diversity produce lower per-capita city growth,
indicative of short-run congestion effects from ethnic conflict. However, higher migrant diversity
also predicts increases to non-agricultural labor share, suggesting that migrant diversity plays an
important role in structural transformation.

The urban share of population in Africa rose from 31 to 54% between 1990 and 2020 (Christiaensen
et al., 2025). Across African cities about a third of the urban labor force is composed of migrants from
rural parts of the country (Christiaensen et al., 2023). In developed countries, the most productive
cities are both dense and cosmopolitan. New York or London host a diversity of industries, amenities
and services that benefit from a wide range of workers with a healthy mix of skills. Whether
developing country cities grow under the same conditions is an open question. In the context of
Africa, there are reasons to be skeptical that cities benefit from either density or diversity. First,
African cities suffer from high congestion costs and poor urban infrastructure. Traffic, pollution, poor
housing and small industrial sectors may all prevent cities from taking advantage of increased density
(Castells-Quintana, 2017). Second, African countries are saddled with ethnic and religious conflict.
A literature in political economy documents correlations between measures of ethnic and linguistic
diversity, low GDP growth and high incidence of violent conflict (Arbatli et al., 2020; Alesina et al.,
2003; Robinson, 2020). While the mechanisms are not well understood, microeconomic evidence has
shown that ethnic divisions can directly lower the productivity of firms (Hjort, 2014).

This paper offers a framework to synthesize the literatures on agglomeration and ethnic conflict.
Density and diversity are jointly determined by the size of the labor force, and the mix of worker
types. As migrant flows increase or decrease, they increase or decrease the level of density in a city.
If migrants are all from the same origin, then they lower the relative diversity of the workforce.
If migrants come from many different origins, the relative diversity of the migrant pool increases.
Capturing the effects of migrants on urban Africa requires an empirical strategy that can disentangle
the effects of migrant levels and composition. To identify these parameters separately, I construct a
shift-share instrument that predicts linear changes in migrant flows, and nonlinear changes in migrant
diversity. Then, I consider the role of pull and push shocks in driving changes in migrant levels and
composition. I estimate the impact of climate, commodity prices and conflict on the size and spatial
pattern of migrant flows in Africa.

The paper begins by creating a proxied origin-destination panel of African migrant flows. To
overcome data gaps in the measurement of African migration, I use the universe of publically available
African censuses and leverage a mix of worker birthplace and language data to identify worker origins.
While past work on African migration has relied on cross-sectional data or small household panels,
this origin-destination panel captures aggregate changes in population size and composition by origin
between censuses.

Destinations are exposed to migrants from different birthplaces according to a pre-period set-
tlement share of workers from a given origin o living in destination d. Each origin birthplace has

a country-wide outmigration “shift", measured as the total number of people from that birthplace



observed living outside of that homeland across census periods. The combination of the aggregate
shifts with the destination-specific shares is an instrument for migrant labor size, or the “levels"
of migration. To capture the effects of composition, I add a second shift-share instrument. This
“composition" instrument captures how changes in the distribution of the outmigration shifts pre-
dictably alter a Herfindahl Index (HHI) of migrant shares. The result is a linear and nonlinear
shift-share instrument to predict changes in both migrant levels and birthplace composition, as mea-
sured by an HHI of birthplace shares. The instruments capture predicted changes in migrant levels
and composition that are plausibly exogenous to contemporaneous labor demand shocks.

To address concerns about destination productivity changes being engodenous to birthplace-level
outmigration shifts, I build on the shift-share strategy by replacing the outmigration shifts with
predicted outmigration rates. Following work on historical immigration to the US by Boustan et al.
(2010), I predict outmigration from each origin using a set of plausibly exogenous shocks related to
climate, conflict and international prices. In a zero stage I show that drought reduces outmigration,
while conflict and high commodity prices boost outmigration rates. Leveraging these variables to
predict our shifts, I re-estimate the 2SLS model for levels and composition.

While migrant settlement shares are often treated as an endogenous component in Bartik-style
migration instruments, serial correlation between pre-period settlement shares and contemporary
labor demand may bias results. In a last exercise I attempt to isolate exogenous variation in shares
that comes from a zero stage regression of origin-destination distances and historical destination
characteristics. These “pull characteristics" predict a destination’s overall attractiveness to migrants
based on historical productivity shocks that are plausibly unrelated to contemporary demand. “Pull
characteristics" can be thought of as historical instruments for agglomeration. Examples include
distance to colonial railroads, historical mineral deposits, and portage sites.

The outcomes of interest measure different aspects of a destination’s urban growth. I use different
functions of changes in satellite night-light luminosity as proxies for changes in city size and GDP
per capita. I also use census measured non-agricultural labor share as a proxy for urbanization, and
a principle component of housing characteristics as a measure of local average household wealth.
The results show that in-migration to a destination increases city light density, but not per-capita
growth rates. Higher migrant levels scale up city sizes, but don’t yield higher productivity growth.
A higher diversity of migrants coming from a wider set of origins decreases both light density and
per-capita growth. Moving from a perfectly homogeneous to a perfectly heterogeneous migrant labor
force reduce light density growth by 10%, conditional on migrant labor size. These effects are large.
Relative to other developing countries, the negative effect of migrant labor size on light density
growth is 4 times larger in an African context, and the congestion effects of diversity are twice as
large. These results suggest that congestion forces created by migrants may constrain the potential
benefits of increasing density.

When examining non-light based measures of productivity the picture becomes more complicated.
More diverse migrant pools increase the non-agricultural labor share, an indicator of urbanization
and structural transformation. Again the size of the effects are economically meaningful. Increasing
migrant diversity creates a more than 1 for 1 increase in non-agricultural labor share, conditional on
migrant labor size. Migrant labor size by itself has a modest and negative effect on non-agricultural
labor share. I find that the result is driven mainly by an increasing share of services. This hetero-
geneity points to the importance of separately identifying size and composition effects of migration.
I interpret these results as evidence that migrant diversity may have negative short-run effects on
city growth, but may yield long-run benefits in the form of industry mix and structural transfor-
mation. As a further exploration of heterogeneity, I consider evidence from the end of Apartheid in
South Africa, which created a sudden drop in migration costs for black South Africans. Leveraging
the abolition of Pass Laws as a natural experiment, I study the impact of the end of Apartheid on
changes to migrant labor size and diversity. I find that while the size of the native black migrant
labor force still produces negative effects on urban productivity growth consistent with the baseline

results, there are no congestion effects from black migrant diversity. This result shows that particular



country experiences and history may alter the implications of migrant diversity for urban growth.

I consider several mechanisms to explain my results, including ethnic conflict, linguistic diversity,
firm size and skill composition. I find evidence consistent with the congestion effects of ethnic conflict
described in the cross-sectional political economy literature. Both increasing migrant labor size and
diversity predict higher rates of conflict in receiving cities. Unlike past experimental work, I don’t
find evidence that increasing worker diversity lowers wages or output per worker in a panel of firms,
or that migrant diversity affects the average skill level at destination. In a final section of the paper,
I explore the possible long-run benefits of migrant diversity suggested by the positive impact on non-
agricultural labor share. I leverage my constructed historical agglomeration pull factors in a long-run
version of the empirical strategy to explore the cross-sectional relationship of diversity, population
and productivity across African cities. I find that cities that happened to be located in more diverse
areas due to exogenous factors benefitted more from historical productivity shocks in the long-run.
I conclude that migrant diversity brings short-term costs, but may play a beneficial role in long-run
structural change.

This paper makes a contribution to the identification of linear and nonlinear effects of migration.
The literature on developed country migration regularly quantifies the effects of migrant flows on
growth, often parsing results by skill level. Recently, researchers have begun to consider the impor-
tance of broader categories of worker type in explaining the heterogeneous effects of immigration on
destinations. Alesina et al. (2016) directly studies the role of birth country diversity on destination
outcomes using a gravity model to predict both the share and diversity of immigrants. They find that
immigrant diversity is positively associated with measures of TFP and patent intensity. However,
their estimation strategy does not consider the simulteneous role of migrant labor size, and risks
conflating the effect of birthplace diversity with migrant labor size. A more recent literature has
sought to microfound the role of particular ethnic or national groups in productivity growth through
knowledge spillovers or home-country connections (Boberg-Fazli¢ and Sharp, 2024; Choi et al., 2024;
Burchardi et al., 2019; Imbert et al., 2022). Another strand of work has studied the impact of
ethnic enclaves and different assimilation rates on the migrant labor market (Albert et al., 2021).
Assimilation rates, ethnic enclaves and knowledge-spillovers are all a function of the composition of
migrants. My paper develops a framework to aggregate these ideas into a shift-share design that can
disentangle the effects of pure increases in labor size from compositional changes in migrant worker
types.

In developing contexts, a few papers have considered the direct effect of birthplace-specific human
capital on destination productivity (Bazzi et al., 2016). Most work on ethnicity and migration in
development has been interested in estimating linguistic or cultural distance as a migration cost,
rather than evaluating the aggregate effects on destinations (Wang, 2024). In political economy,
studies of African diversity have been mostly correlational or leveraging long-run instruments (Alesina
and Ferrara, 2005; Alesina et al., 2003; Arbatli et al., 2020; Ashraf and Galor, 2013). This work has
generally found that more linguistically or culturally diverse countries see higher conflict, lower public
goods and lower GDP growth. At subnational levels, Montalvo and Reynal-Querol (2021) find this
correlation flips direction, hinting at the idea that agglomeration benefits and diversity play joint
roles in city-level outcomes. This correlational work has suffered from two key empirical concerns: (1)
historical measures of local diversity are correlated with local productivity factors and geography. The
distribution of ethnic groups across space is related to many unobservable productivity fundamentals
(Michalopoulos, 2012). (2) Diversity is intimately related to population size — historically diverse
places tend to also have relatively more people. Montalvo and Reynal-Querol (2021) note that many
historical trade centers, now larger cities, were founded at the intersection of ethnic boundaries. My
approach addresses these concerns first by estimating a differenced equation that leverages changes in
population and diversity within destinations over time. Second, I design two shift-share instruments
to separately identify the effects of migrant labor size and birthplace diversity.

This paper also speaks directly to the literature on the returns to migration. While this literature
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internal migrant flows, or even area of previous residence. Most results in African settings have
relied on household panels that track individuals over several waves, or cross-sectional data with
simple markers of migrant status. Young (2013) and Gollin et al. (2021) use Demographic Health
Surveys (DHS) to quantify large differences in consumption and amenities between rural and urban
areas. Hamory et al. (2021) and Lagakos et al. (2020) use individual fixed effects in household panels
to compare migrant returns before and after migrating from rural to urban areas, and find relatively
lower estimates of urban premia. Related work looks for evidence of agglomeration forces, showing
increasing returns to density across African cities (Henderson et al., 2021; Castells-Quintana, 2017).

Across these papers migrants are identified in coarse categories as coming from a “city", “town"
or “rural area". The data is either not large enough or not detailed enough to consider origin-
destination pairs, making it hard to estimate migration costs. Relatedly, while these papers consider
heterogeneous migration costs across origins, which may include linguistic differences, there’s no
conception of complementarities between migrants of different origins. This paper contributes in two
ways. First, I use a combination of birthplace data and ethnic linking methods to tie workers at
destination to specific regional origins. This novel proxied origin-destination panel is able to answer
more specific questions about the role of particular origins on migration returns. I show that my
proxied origin-destination migration panel can replicate key patterns in standard migration gravity
models and estimates of migration returns. Second I bring shift-share methods to an African setting,
allowing me to calculate a density premium by leveraging exogenous shifts in migration levels, rather
than indvidual returns.

Finally, I contribute to a separate literature that considers the role of shocks on migration. My
paper uses climate, commodity price and conflict shocks as plausibly exogenous intstruments for shifts
in outmigration. Kamuikeni and Naito (2024) and Henderson et al. (2017) find drier conditions in
African countries increase the rate of internal migration and urbanization respectively. Henderson
et al. hypothesize that cities that specialize in non-agricultural production provide a safe-haven
for rural migrants. McGuirk and Nunn (2024) links drying conditions with increased conflict in
Africa between pastoralists and farmers. Few papers study the effects of price shocks on migration
levels or composition in African countries (Briickner, 2012). Gollin et al. (2016) consider the role of
commodity exports on urbanization, finding that higher value exports also drive urbanization at the
country level. My work most relates to a separate thread in the political economy of conflict that
identifies the association of granular price shocks of agriculture and minerals with conflict (Bazzi
and Blattman, 2014; McGuirk and Burke, 2020). This paper is a more granular study of push shock
dynamics, using origin-destination decisions and subnational exposure to shocks as a first-stage to
predict migrant flows.

This paper brings a novel perspective to the impact of shocks on migration. Suppose that where
migrants come from is an important variable in the production function of a destination. If both
levels and composition of migrants matter, then the level and composition of shocks matters as well.
An intense climate or price shock that affects a singular region of a country may drive many migrants
that are relatively homogeneous in terms of language or skill. A shock that is broader, affecting many
locations at different intensities will create a more diverse flow of outward migrants. I show that
different push-shocks contribute differently to migrant flows, affecting both levels and composition
simultaneously.

A key innovation of this paper is the use of nonlinear functions of shift-share instruments to
capture nonlinear effects of migration. The methods used to disentangle size and composition of
migrant flows can be applied to a number of other contexts where the impact of flows have linear
and nonlinear components, such as in the study of skill-complementarity, assimilation, segregation or
industry concentration (Lewis, 2011). Immigration shocks do not only cause changes in population
levels or average skill level. The relative sizes of immigrant populations can affect the rate at which

group assimilate, the formation of enclaves, rates of crime and conflict and the organization of firms.



2 Data

An ideal dataset to study the aggregate impacts of migration would capture changes in migrant
flows by destination and origin over time. Few African data sources contain granular migration flows
within or across countries. To measure changes in migrant composition, I construct a proxy for
origin-destination panel data by linking people at a destination to their origin birthplace or ethnic
homeland. The main analysis uses the subset of available African censuses that include subnational
information on household location and either birthplace, ethnicity or mother tongue. The spatial
granularity is at the second administrative level, which corresponds to counties or districts. While
the main tables use censuses to capture changes in flows over time, I supplement this evidence in
different parts of the paper with geolocated Demographic Health Surveys (DHS) and Afrobarometer
Surveys. These cross-sectional household surveys collect data on fewer households but contain more
variables and years. Both DHS and Afrobarometer contain information on workers’ ethnicity, mother
tongue or tribe. Using the ethnic linking methods described below, I can identify the spatial origins
of individuals in DHS and Afrobarometer, allowing me to construct a panel at the sample cluster to
ethnic homeland pair level.

In the section below, I discuss the construction of the origin-destination panel data. Next I discuss
the data inputs used in producing exogeneity in the outmigration shifts and settlement shares. “Push
shocks" are used to predict changes in outmigration rates for different origins. The variables used for
outmigration shocks include drought events, agricultural and mineral price shocks, and geolocated
conflict events. “Pull characteristics" are used to predict settlement shares. These are characteristics
that are correlated with early settlement in a destination, but are unrelated to contemporary labor
demand shocks. I use colonial rail locations, mineral deposits, and river characteristics to predict
which destinations attracted migrants historically.

Next I discuss the productivity outcomes used to evaluate changes at migrant destinations. I use
a variety of functions of night light density that have been used in past work on urban productivity
in developing countries (Chiovelli et al., 2023). I also leverage census data that captures measures
of industry-specific labor shares, and individual’s housing characteristics as a wealth proxy. The last
part of this section explores observational returns to migration using the proxy origin-destination
dataset, and finds patterns that are consistent with more standard origin-destination panels of mi-
gration. A concern with using ethnic or language data to infer migrant origins is that changes over
time may capture changes in fertility at destination, rather than real migration flows from the ori-
gin to destination. The observational returns serve as a sanity test that provides evidence that my

approach is capturing migration changes rather than relative growth rates.

2.1 Proxied Origin-Destination Panels
2.1.1 Census data

When available, African censuses are taken from IPUMS. In a few cases I supplement with census
data from the World Bank microdata portal or government statistical websites. Cesuses are typically
spaced about 10 years apart. The majority of the censuses are 10% random samples. The census
years cover the period between 1970 and 2020. The main analysis will focus on the period 1990 -
2020, which is the window of time in which satellite data of nighttime light density is available.

A subset of censuses record a worker’s birthplace at the second administrative level. I link each
individual at a given destination and year to their birthplace, which I call their “origin". Because
subnational birthplace is reported for migrants moving within country, this paper focuses on the
effects of internal migrants. Aggregating the data to the origin-destination-year level, I can observe
decade level shifts in the number of people from a given birthplace, at a given destination. This panel
is unbalanced, as each country completed censuses in different years. For a given country, the unit of
analysis is changes in migrant labor and composition across census years for a given destination-year.

I supplement the birthplace data using an ethnic linking strategy. In some censuses workers



report their ethnicity or native language, but not their birthplace. Because ethnic groups were
historically organized into regional territories, I can use this information to connect them to their
ethnic homeland of origin. I use the Linking Ethnographic Database (LEDA) by Miiller-Crepon
et al. (2022) to map each reported ethnicity to an ethnic homeland region on the Murdock Map,
a common ethnographic resource used in African political economy. This linking procedure allows
me to match a worker to a spatial origin or “homeland". Figure 17 shows an example of the groups
plotted in the Murdock map, most of which resemble counties in size. I can run the same analysis
using these ethnic homelands as our “origins", while destinations are still reported at the second
administrative level. See Table Bl for a list of the censuses used in the analysis, including both

samples with birthplace or ethnicity-linked origin data.

2.1.2 DHS and Afrobarometer Panel data

The shift-share results are based on the constructed panel of censuses. To supplement some analyses,
I use standard geolocated household surveys. The Demographic Health Surveys (DHS) and Afro-
barometer are household surveys with detailed information on assets, housing quality, identity and
the geolocation of households (BenYishay et al., 2017; Boyle et al., 2024). Afrobarometer includes
various questions about ethnic and economic attitudes. These variables are useful in understanding
city-level and individual-level outcomes over shorter time horizons. What the surveys lack is detailed
information on migration behavior . Since most of the surveys ask about ethnicity or home lan-
guage, I can use the same LEDA linking procedure as described above for censuses. Leveraging the
ethnic information in DHS and Afrobarometer as an indicator of migrant origin allows me to study

migration with a detailed origin subnational unit.

2.2 Push Shocks to Outmigration

In an exercise to isolate exogeneity of shifts in our shift-share design, I consider a variety of shocks
that may push migrants from origins. Past empirical work on migration has used instruments for
income shocks that affect an origin region’s outmigration rate but are unrelated to productivity
changes at destination. I explore several potential candidates for push shocks at origin based on
past work. These include climate shocks, international commodity prices and conflict events. While
all these subnational shocks have been used in other contexts, my paper is among the first to study

these shocks in the context of an origin-destination migration panel for Africa.

2.2.1 Climate

A number of recent papers have studied climate change effects on migration in developing countries
(Desmet and Rossi-Hansberg, 2024; McGuirk and Nunn, 2024; Kamuikeni and Naito, 2024). The
hypothesis guiding this work is that drier conditions create negative income shocks in agricultural
areas, which then affects migration decisions. For instance, a major drought in East Africa in 2011
forced a reported 920,000 people from Somalia to flee to neighboring countries, many of whom settled
in cities like Nairobi. The main climatic variable of interest is a measure of drought conditions. I
use data from the Standardised Precipitation-Evapotranspiration Index (SPEI), which measures
drought intensity monthly by combining temperature and precipitation data (Vicente-Serrano et al.,
2010). The data provides monthly estimates of drought intensity at a 0.5x0.5 degree cell resolution
from 1900-2022, which I aggregate into yearly estimates. For each subnational unit, I calculate the
average drought experience over time. A month-cell is under normal conditions when the SPEI
index is around 0, which means there is balance between the precipitation rate and the potential
evapotranspiration. I code the month as “in drought" if the index is a standard deviation lower

than zero. This is the threshold for extreme dryness suggested by the index (Vicente-Serrano et al.,

LA subset of DHS surveys ask individuals about their region of previous residence. Typically these regions are listed at
the first administrative level such as provinces, or may be as broad as identifying North vs. North-West of the country.
Ethnic homelands are a more granular and consistent spatial unit.



2010). For each region, I calculate a yearly drought index from monthly dummy variables that signal
whether the month was a drought based on the SPEI (ie. the share of year in drought). As secondary

climate variables, I also consider rainfall and temperature separately.

2.2.2 Agricultural and Mineral Commodities

Many rural areas in Africa produce commodities for export, including cash crops like maize and
minerals like gold or diamonds. As international prices fluctuate, producers in different regions are
differentially exposed to these potential income shocks. Migration may then respond positively or
negatively to exogenous changes in international commodity prices, weighted by local commodity-
specific exposure. To construct a subnational measure of price exposure for key commodities, I use
data on both the share of production in commodities and international prices. I construct a yearly
time series of the global market prices of key commodities spanning the years 1960-2024. I start from
a price list assembled by (Bazzi and Blattman, 2014) which tracks major agricultural and mineral
commodity prices from 1960-2009. I then manually extend this list using available data from the
IMF Primary Commodities price system, and the World Bank Pink Sheet (Group, 2025; IMF, 2025).
For mineral prices, I mainly rely on the US Geological Survey’s (USGS) “Historical Statistics for
Mineral and Material Commodities", which covers US prices of major minerals back to 1900 (Kelly
et al., 2010).

I create a measure of subnational exposure to various agricultural commodities using FAO Global
Agro-Ecological Zones (GAEZ) production maps, which estimate the cell-level average hectares dedi-
cated to a set of major commodity crops across the continent (Berman and Couttenier, 2015). These
production areas are estimated in the year 2000, and are used as baseline exposure. Product prices
are normalized to 100 in 2000 and summed with weights by the hectare area. Exposure is weighted
by the share of productive hectares dedicated to that crop. For each crop product p grown in region

o:

Agricultural Price Exposureo = Z Price; * HectareShareop (1)
p

To account for price shocks over longer time horizons, I construct different measures of lagged

price exposure. A 10 year lagged exposure is an average of price exposure between censuses:

¢
. 1 .
PriceShocko = 0 E PriceExposureot (2)

t—10

For mineral commodities, I weight exposure to given minerals using the “USGS Compilation

of Geospatial Data (GIS) for the Mineral Industries and Related Infrastructure of Africa" (Kelly
et al., 2010). This dataset contains geolocated mineral facilities and their estimated capacity. For
each mineral, I measure the total capacity across countries. Then each mineral producing region is
exposed to a given mineral price according to its relative share of total production capacity in that

mineral. The total mineral price exposure for a region is then:

Mineral PriceExposureo,s = Z Prices * RelativeCapacityom (3)

Where relative capacity in mineral m for region o is given by:

Capacityom

RelativeCapacityom = C 1
apacitym



Figure 1: Data Examples from Mozambique 1997-2007

g oo ke hange nPric Exposure

(a) Change in Migrant In-Flow to Maputo (b) Change in Agricultural Price Exposure

(¢) Drought Exposure (SPEI) (d) Conflict Exposure

Notes: This figure shows examples of the data from one census pair, specifically Mozambique 1997 and 2007. Panel A shows the
change in migrant flows to Maputo city from each birthplace between 1997 and 2007. Panel B shows the change in the weighted
agricultural price exposure between 1997 and 2007. Panel B shows the average drougth intensity by region between 1997 and 2007.
Panel D shows the average annual conflict events in each region over this time period. Data for the change in migrant in-flows
comes from the publically avaialble African censuses on IPUMS International. Data for agricultural price exposure is taken from
IMF Primary Commodities and the World Bank Pink Sheets, combined with FAO production exposure. Data for drought exposure
is calculated from an SPEI index (Vicente-Serrano et al., 2010), and Conflict Exposure data is from ACLED.

2.2.3 Conflict

The Armed Conflict Location & Event Data (ACLED) provides geolocated conflict events across
Africa® The ACLED data covers events between 1997 and 2025. The data is based on the manual
coding of news articles, and provides basic information on each event including approximate dates,
estimated death toll, and the types of actors involved. For each region, I aggregate all conflict events
that appear in that region to produce an annual count of conflict events. Conflict intensity in a
given year is the average number of conflict events per month that year. As a secondary outcome, I

produce an index of average conflict faitalities in a given region-year.

2.3 Pull Characteristics to Predict Immigration

Traditional migration shift-share instruments rely on endogenous settlement shares of different im-
migrant groups from past years. If settlement shares are serially correlated over time, its possible
that the settlement shares are endogenously related to contemporary labor demand shocks. For
robustness, I'll also consider a group-specific settlement share that is instrumented by a collection
of destination and origin-destination characteristics. In particular I instrument for past settlement
using the interaction of the distance between origin-destination pairs and a set of “pull character-
istics". These pull characteristics are designed to predict the attractiveness of destinations but are
plausibly uncorrelated with current period demand shocks. I consider several historical shocks that
predict urban formation, including the presence of mineral deposits, colonial railroads and portage
sites. Data for mineral deposits is taken from the “USGS Compilation of Geospatial Data (GIS) for
the Mineral Industries and Related Infrastructure of Africa". Data on colonial railroad projects is

taken from the universe of colonial rail projects collected by Jedwab and Moradi (2016). Last, I

2Different events have different degrees of confidence in the precise geolocation. I only include events where the re-
searchers have marked having confidence in the geolocation at the second administrative level.
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construct an instrument for portage leveraging data on river flow from the HydroSHEDS database
(Lehner and Grill, 2013). The details of these instrument constructions are described in the empirical
strategy.

Last, I leverage a set of common geographical characteristics as controls in cross-sectional re-
gressions. These include the ruggedness index from Nunn and Puga (2012), malaria suitability from
Kiszewski et al. (2004), Tse Tse suitability from Alsan (2015) and soil suitability from Ramankutty
et al. (2002).

2.4 Destination Productivity Outcomes

I use a variety of subnational proxies for regional productivity. I consider two functions of changes
in light density as measures of urban extent and GDP per-capita growth. I also leverage census-level
measures that capture structural transformation and urbanization characteristics including non-
agricultural and services labor shares. Most censuses also include data on information on housing
quality, such as the material of the roof and floor of the surveyed household. I construct a principle
component measure of these material characteristics as a proxy for household wealth. All outcomes

are measured in terms of differences between census years.

2.4.1 Light Density

Nighttime light density is a commonly used proxy for economic development, especially at subna-
tional levels. A variety of papers have shown correlations between measures of luminosity and other
measures of wealth from either surveys of household income or administrative level human capi-
tal and non-agricultural labor share (Michalopoulos and Papaioannou, 2013; Chiovelli et al., 2023).
There are three issues that must be dealt with to use luminosity as a proxy for wages or productiv-
ity. First, the light density data produced before 2013 and after 2013 are at different resolutions,
which complicates comparisons over time ®. I use a harmonized dataset produced by Li et al. (2020)
that performs an inter-calibration to combine the datasets and generates a DN-style output at 30
arc-seconds which ranges from 0 to 63.

The second issue is dealing with blooming, where high light density in a given cell may bleed into
neighboring cells producing unwanted spillovers, say from a large city to a small neighboring town.
The harmonized dataset partially adjusts for this, and administrative regions are large enough to
somewhat mitigate this concern. Additionally, in the robustness analysis I use spatially correlated
standard errors to address contamination across regions.

The third issue is how to construct an appropriate measure of economic growth from the pixel-
level light data. Different papers use different constructions. Chiovelli et al. (2023) aggregate pixels
by summing over their regions of interest, and then including controls in their regression for log
population and region area. Montalvo and Reynal-Querol (2021) use changes in log light density
divided by a gridded population estimate as a measure of local economic growth. I consider two light
density constructions in differences to capture the size and growth of destinations. The first is the
standardized level change in average light density in a given administrative region. This measure
captures a change in light density levels, and can be thought of as a proxy for city size growth or
extent. The second measure is the change in the log of light density over population. This measure
captures the proportional change in light density per capita, and is used as a proxy of GDP per
capita. As cities approach the maximum value of measured light density at the pixel level, there may
be frontier effects. Large productive cities may show low light density growth because there is no

further improvement to be made. I try to mitigate these concerns by controlling for pre-period light

3Before 2013, satellite imaging comes from the Defense Meteorological Satellite Program (DMSP)/Operational Linescan
System (OLS), which provides digital number (DN) values at a resolution of 30 arc-seconds. After 2013, the Visible Infrared
Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership satellite provides light density data
at 15 arc-seconds, and at a higher radiometric resolution. This means it can detect smaller differences in light density

relative to the past technology.
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density in the differenced regressions. I also consider separate measures of productivity from asset

data and industry shares.
ALog(Lights/Capita): = Log(Lights/Capita): — Log(Lights/Capita):—1 (5)

2.4.2 Assets and House Quality

I follow the spirit of Young (2013) using the ownership of durables and housing conditions as proxies
for household wealth. DHS surveys include a rich set of variables that describe ownership of different
durable assets like a TV, bicycle, car or microwave. I use these dummy indicators for assets to
construct a wealth score as a first principal component of these assets. This procedure is similar
to the DHS’s own measured wealth score, which leverages a first principal aggregation of asset
categories. I only include the subset of assets available in all surveys, to ensure comparability
across survey samples. In the census data, assets are more sparse. However, most censuses include
information on the house, wall and roof materials. Leveraging this fact, I replicate the procedure for
DHS estimations of wealth by taking a first principal component of a set of house quality measures
for each census where it’s available. Averaging these estimates across individuals in a district gives
us a subnational measure of housing quality. Table 1 shows that these principal component measures
are positively correlated with education and age, suggesting that the method accurately captures

relative wealth.

2.4.3 Industry and Urbanization

As Gollin et al. (2016) highlights, growth in cities can take place in both tradable and non-tradable
sectors. A common refrain about African cities is that they seem to grow without an expansion in
the manufacturing sector; so-called “consumption cities" (Jedwab et al., 2025). I use two measures of
urbanization growth as outcomes: the total non-agricultural labor share and the non-tradable services
labor share. Each outcome is derived from individual census data which reports general industry
classifications such as agriculture, mining, wholesale trade, manufacturing, financial services, etc.
These industries are aggregated into measures designed to reflect growing urbanization — as cities
grow, we expect them to increase their non-agricultural share. For cities experiencing service-led
growth rather than manufacturing growth, we expect “services share" to increase.

These outcomes are considered in terms of differences across census years. This is particularly
important in an African data context because informal work is often underreported in census occu-
pational data, even though it makes up a siginificant fraction of the labor. The industry measures
used capture changes in the industry shares among the subset of individuals who report formal em-
ployment. The benefit of our differenced equation design is that baseline difference in formalization

rates are differenced out.

2.5 Validating a Proxy Origin-Destination Panel

Using origin-destination panel data from ethnicity and birthplace differs in significant ways from
typical origin-destination panels. The data does not capture flows of migrants over time, but rather
the stock of individuals from particular birthplaces or homelands for a set of unbalanced years.
Observing an increase in people from a given birthplace o in a destination d may reflect increased
migrant flow into the destination, or decreased return migration to o. Observing an increase in
people from a given ethnicity may also reflect differential changes in the population growth of that
ethnicity, rather than changes in migration from an ethnic homeland.

As a first exercise I estimate observational returns to migration, and compare the results to
other cross-sectional estimates as a validation exercise. I use DHS panel data, where individuals
are linked to ethnic homelands. I use DHS panel for this exercise because of the detailed catalogue

of individual assets, which can be used to construct a proxy for migrant wealth as an outcome.
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Individuals are identified as “migrants" if they are residing in an administrative region outside of their
ethnic homeland. Leveraging the DHS’s survey of individual assets, I construct a “durable assets"
and “house quality" score. The procedure for doing this follows closely the DHS’s own method for
estimating wealth, transforming each asset category into a dummy variable and calculating a first
principal component measure. The outcome “Durables" is the first principal component of several
binary variables for different assets, including electricity, phone, car, fridge, television and bicycle.
The outcome “House Quality" is the first principal component of reported wall, roof and floor material
of the house. Using the constructed principal component measures of durable assets and housing

quality, I compare consumption between migrants to non-migrants as:

Wealthsy = B1Migrant, + S2Migrant, - Distanceoq
+ B3Migrant, - CoethnicShare.q + Z; + Xoda + Wa + Vst + Yo + €4t (6)

Where Wealth;; is the wealth score for individual ¢ in survey year t. Distoq is the log distance
between the ethnic homeland and the destination, Migrant; is a dummy for migrant status, and
CoethShareoq reflects the fraction of individuals in d that are from ethnic homeland o. I include
fixed effects for country-year v, and -, to isolate variation within an ethnic group. The controls for
the individual Z; include age and schooling, while X, includes the level of o-d distance and coethnic
share, and Wy includes destination log population. Wealth is a measure of either durable assets or
housing quality. Subsequently, I compare outcomes of migrants to natives within a destination by
replacing the ethnicity fixed effect with a destination fixed effect. Finally, I isolate the sample to only
migrants, and compare the outcomes of migrants within a destination from different homelands.

Table 1 shows the results for different variations of equation 6 with different fixed effects. While
the average consumption benefit to migrants is weakly positive in terms of assets, columns 1-3
suggest that migrants that travel further have higher returns. This is consistent with a model of
migration with heterogeneous costs in which the migrants that choose to pay high migration costs
are wealthier ex-ante, or have a higher productivity draw for a particular location (Lagakos et al.,
2020). Coethnic share is consistently negative across specifications, suggesting that migrants gain
better returns in more diverse destinations. This is consistent with the findings of Wang (2024),
which finds that migrants that move to more culturally distant destinations have higher returns in
an Indonesian sample. As large productive cities are more diverse, this finding is consistent with
the idea that migrants move to productive, cosmopolitan destinations. I also find that returns to
migration are decreasing in destination population size, conditional on travel distance and coethnic
share. Henderson et al. (2021) find similar negative effects of population scale on household incomes
in their cross-sectional African data, consistent with a story about the negative effects of sprawl and
slum formation on migrant returns. The modest to negative average effects of migrant status on
wealth offers a preview of the paper’s baseline results, where I find no per-capita growth premium
from increased migrant labor size.

As an additional check, I also run a standard gravity model relating the share of migrants from
origin o in d using a Poisson pseudo-likelihood (PPML) model. Table B2 shows the relation of the
share of migrants arriving in d to their travel distance and coethnic share. Consistent with past
work on migration, I find that migration between origin-destination pairs in my panel is decreasing
in distance and coethnic share, as individuals sort towards areas that are close by and majority
coethnic. This finding is consistent with standard models of migration with linear migration costs

in distance.

3 Empirical Strategy

The goal of the paper is to estimate the effects of changes in migration levels and composition on

destination outcomes. Both the size of the migrant labor force and the diversity of migrants are likely
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Table 1: Observational Returns by Migrant Status and Distance

(1) (2) (3) (4) (5) (6)
Within Ethnicity Within Destination Migrants Only

Durables  House Quality = Durables  House Quality = Durables  House Quality

Migrant==1 0.152 -0.121 0.059 0.125
[0.079]* [0.083] [0.080] [0.082]
Migrant*Population -0.050 -0.032 -0.015 0.000
[0.008]*** [0.008]*** [0.008]* [0.008]
Migrant*Distance 0.064 0.098 0.024 -0.009
[0.011]*** [0.012]*** [0.012]** [0.013]
Migrant*CoethnicShare -0.251 -0.208 -0.221 -0.270
[0.033]*** [0.035]*** [0.038]*** [0.042]***
In(O-D Distance km) 0.024 -0.026 0.030 0.027 0.064 0.028
[0.008]*** [0.008]*** [0.010]*** [0.011]** [0.008]*** [0.009]***
In(Population) 0.227 0.203
[0.008]*** [0.008]***
Age 0.007 0.005 0.006 0.004 0.006 0.004
[0.000]*** [0.000]*** [0.000]*** [0.000]*** [0.000]*** [0.000]***
School Years 0.101 0.075 0.081 0.058 0.082 0.057
[0.001]*** [0.001]*** [0.001]*** [0.001]*** [0.001]*** [0.001]***
Coethnic Share -0.163 -0.115 -0.018 0.041 -0.263 -0.254
[0.029]*** [0.031]*** [0.033] [0.035] [0.022]*** [0.026]***
Mean Dep. Var -0.017 -0.017 -0.017 -0.017 0.021 0.007
Observations 359,411 395,543 359,401 395,529 183,244 199,415
Destination FE N N Y Y Y Y
Ethnicity FE Y Y N N N N
Migrant Only N N N N Y Y

Notes: This table estimates observational returns to migrations from different model specifications. The outcome “Durables’
is the first principal component of several binary variables for different assets, including electricity, phone, car, fridge,
television and bicycle. The outcome “House Quality" is the first principal component of reported wall, roof and floor
material of the house. Origins are ethnic homelands, and destinations are administrative units at the second level. The
first two columns include ethnic group fixed effects to isolate variation within ethnic group across destination and migrant
status. Columns 3-6 include destination fixed effects to isolate variation within destination across migrant status. All
regressions include country-year fixed effects. Standard errors are clustered at the DHS sampling cluster level. * p<0.01,
** p<0.05, *** p<0.01.

endogenously determined by a destination’s productivity. I use a shift-share instrumental variable
strategy to overcome this identification challenge. The IV strategy adds a nonlinear component to a
standard migration shift-share to simultaneously instrument for migrant size and composition. In the
main analysis, the shifts are birthplace level outmigration rates, while the shares are origin-specific
settlement shares at destination. Changes in migrant size and diversity are predicted as linear and
nonlinear combinations of these shifts and shares. In a secondary analysis, I then isolate exogenous
variation in the outmigration shifts using birthplace-level push shocks that move migrants in or out
of their birthplace over time. Third I use destination-specific pull characteristics to isolate exogenous
variation in settlement shares.

The strategy starts from an equation of interest that relates a destination’s productivity to both

migrant labor size and diversity. For a given destination d in year ¢, the equation of interest is:

Ya,e = Pila + Padivas + ve + va + €as (7)

where yq¢+ is a proxy for log wages, or another city-level outcome. The logged migrant labor
force size is l4¢, and the diversity of the migrant labor force is represented by divg:. The diversity of
the labor force is a measure of the distribution of groups within the labor force. I use a Herfindahl
measure of the concentration of groups. For exposition, I specifically use the negative of a Herfindahl
index as the measure of “migrant diversity", which is the inverse of the concentration of birthplaces.
For workers coming from a set of birthplaces o € O and arriving in destination d, I calculate diva:
as:

—divas = Zﬂ'?)dt (8)
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Figure 3: Relationship between Diversity (HHI) and Labor Variables
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Notes: This figure shows scatterplots relating diversity and labor at the destination-year level. The left panel plots total worker
diversity against total log labor size, while the right panel looks at migrant diversity against migrant log labor size. The blue line
is a line of best fit across all points, while the red line is a local polynomial fit with confidence bands.
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composition of migrants moves from totally homogeneous to perfectly heterogeneous in terms of

where 7,4¢ is share of people in d at ¢ from o . As this number moves from 0 to 1, the
birthplaces. Scholars have used a variety of other indices for diversity, including fractionalization,
which is the inverse of a Herfindahl Index, and polarization, which is more sensitive to large, equally
sized groups. I choose to use the HHI because it is the simplest functional form of diversity to
integrate into a shift-share design, and is highly correlated with other popular measures.
Theoretically we expect workers to sort into cities that offer higher wages (Combes et al., 2010).
Therefore productive cities should attract a higher number of workers from a greater set of origins,
creating a correlation between higher yq:, higher 4+ and higher divg:. I address the endogeneity of
migrant flows and destination outcomes in the sections that follow. Section 3.1 describes a shift-
share instrument that can incorporate nonlinear functions of migration like the diversity HHI. Then,
I describe the exclusion restriction of the instrument in section 3.2. Sections 3.3 and 3.4 discuss

extensions using pull and push shocks to predict outmigration shifts and pre-period settlement shares.

3.1 A Shift-Share Instrument for Migrant Birthplace Diversity

The goal is to develop a shift-share instrument for both the level of migration and its diversity,
as measured by a birthplace HHI. I take inspiration from Schubert et al. (2024), which studies
the effect of firm concentration on wages using a firm-level Bartik shock as an instrument for the
change in employer labor market concentration. Similar to my setting, Schubert and co-authors
instrument for an HHI variable as a function of Bartik style shifts and shares. I adapt this approach
to the construction of two simultaneous instruments in a migration setting. In the case of migrant
labor, the instrument is the aggregation of birthplace outmigration shifts and destination settlement
shares. For example a given destination like Kigali Rwanda has a certain fraction of all migrants
from birthplace Kirehe, in the East. The change in migrant labor from Kirehe is a combination
of pre-period settlement shares of Kirehe migrants in Kigali, combined with shifts in the aggregate
migration rate from Kirehe to all destinations. The change in the total number of people from
Kirehe living outside Kirehe across census years constitutes a shift. To instrument for diversity, the
destination settlement shares are weighted by the squared relative growth rates of each birthplace’s
migrant flow. The key is that this aggregation is a nonlinear combination of the individual shift-
shares. The nonlinearity of the function mapping the shift-shares to aggregate diversity allows for
the same set of shift-shares to predict both endogenous variables.

I begin by differencing equation 7 between censuses, which are typically 10 years apart in our
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data:

AYa—(t—10) = 1ALy 1—10) + B2Adivg i (1—10) + €d,t 9)

I instrument for Al4 and Adivg: using decade level shifts from different ethnic homelands and
baseline ethnic shares.

Each origin o has a number of out-of-homeland migrants count, +, which I define as the aggregate
number of people from o observed outside of that homeland in a given census year. Our shifts are

the growth rates in the number of people from o observed outside of their origin, which we define as

counto ¢t —county, t—10

Go,t = county, t—10
Each destination d is exposed to these shifts weighted by their baseline settlement share of people

from that origin in the previous census period. For a given year these settlement shares are the
county,qy

2o a countoay

We can predict the change in labor demand in the region d as the sum of the shifts and shares:

fraction of people from o in d relative to the full migrant population from o: Shareso,q: =

~ countod,t—10
ALy = E = % g * cOUNtt—10 (10)
D acountod,t—10
o

In the analysis, we take a log of this predicted value as our measure AL.
To predict a change in diversity, I start from a definition of the change in birthplace concentration.
Following the HHI formulation above, change in the relative concentration of migrants from different

o living in destination d is:

—Adiva,s = Zﬂgdt - Zng,tflo (11)
o o

This equation can be written as a function of the initial concentration in the base period, and
the respective growth rates of migrants from o to d, and the total change in the migrant labor force
at d. The equation becomes:

. . 2 1+ godt)2
—Adivg: = Zo:ﬂ'od,tflo <m -1 (12)

Where mechanically the change is a function of the growth in the number of people o in d, goa:
relative to the total growth of population in d, called gqs:. The negative term at the front of the
equation reverses the order, such that increasing levels represent lower Herfindahl concentration and
higher birthplace diversity.

Both goq: and g4: are likely correlated with contemporary productivity in the destination. An
instrument replaces the endogenous current period divg: by substituting aggregate shifts for the two

growth rates in equation 12. In particular, our instrument is:

— 2 (14 goz)Q
—Adivgs = ;’/Tod,tflo * (m -1 (13)

Where go: is again the aggregate growth of migrants out of an origin and g.q: is a predicted
growth of migrant labor in destination d defined as > mod,t—10 * ot-

3.1.1 Functional Relationship of Composition, Population and Productivity

The estimation strategy leverages two functional forms for an instrument that aggregates shifts go:
and shares 7,4+ across origins. This is possible because of the nonlinear relationship between the
migration levels and their composition. Two potential issues emerge from this. First, the linear
correlation between migrant levels and composition reduces the power of the estimates. Intuitively,
the more related migrant levels and composition are, the less added variation is introduced by the
second instrument. I show this in a simulation exercise in Appendix A, in which I calculate a
distribution of beta coefficients as the linear correlation between migrant labor size and migrant

diversity varies. In Figure 3 I plot the cross-sectional relationship between migrant diversity and
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Figure 5: Migrant Size and Composition on Light Density
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Notes: This figure shows scatterplots relating migrant diversity, migrant labor size and light density at the destination-year level.
The left panel plots migrant labor size against contemporary logged light density, while the right panel looks at migrant diversity
against contemporaneous log light density. The blue line is a line of best fit across all points, while the red line is a local polynomial
fit with confidence bands.

migrant labor size. In general while the variables are related, the relationship is not strongly linear.
This fact allows us to be more confident that migrant level changes do not linearly predict composition
changes, and that both instruments provide identifying variation to the empirical estimates.
Second, we don’t know ex-ante the functional relationship between city diversity and productivity.
Panel B of Figure 5 presents the cross-sectional relationship between city diversity and light density
in destinations. In the cross-section, I find a positive and linear relationship between worker diversity
and light density. Cities that are bigger and less homogeneous are higher income. This cross-sectional
result is consistent with the subnational associations studied by Montalvo and Reynal-Querol (2021).
In their paper, the authors argue that, while country-level regressions show a negative relationship
between higher diversity and light density, at the subnational level this relationship is reversed. Their
work leverages historical diversity measures from anthropological maps, rather than census-reported
ethnic mix. However, the mechanism that drives their correlation is presumably the same — certain
places that are high productivity attract more people, from more diverse sources. The goal of this
paper is to move beyond these cross-sectional associations, and study a causally motivated estimate

in first differences.

3.2 Exclusion Restriction

The exclusion restriction requires that the drivers of aggregate shifts out of a birthplace are not
correlated with productivity shifts at particular destinations. For example, this would be violated if
productivity gains in certain major cities like Kigali drive aggregate migration trends out of certain
birthplaces. Borusyak et al. (2022) describes the exclusion restriction assumption in shift-share
designs in which exogeneity comes from the individual shocks. In our setting the shocks are the
estimated g,; outmigration rates from origins o in period ¢. Borusyak and co-authors show that the
exclusion restriction in this case is equivalent to an orthogonality condition at the birthplace level.

In particular, given regional exposure weights s, and a distribution of unobservables ¢,:

E[got|po] = 1 (14)

A second requirement is that the shocks are independent and exposure is dispersed across birth-

places. In particular:
E[(g1e — ) (g2t — p)|¢1, 2] =0 (15)

The dispersion condition can be defined as a Herfindahl index that goes to zero as the number
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of birthplaces increases: > 52— 0.

While I can’t directly test these conditions, I perform several tests at the birthplace level. First,
I derive shift-share standard errors that address the possible covariance between g, and ¢, following
Borusyak et al. (2022). These estimates are presented in Figure B5. Second, I check pre-trends by
running birthplace-level regressions of the exposure-weighted residuals of destination characteristics
on our growth rate shocks. This analysis is produced in Figure B7. The destination characteristics
I include are geographical characteristics such as disease ecology and soil suitability, as well as past-
period light density. I show that my birthplace shocks are uncorrelated with pre-period destination
characteristics. Another way to address endogeneity concerns is to directly leverage plausibly exoge-
nous variation in shifts and shares. I describe two potential strategies in the following sections that

utilize migration push shocks and pull characteristics.

3.3 Predicting Outmigration Shifts with Push Shocks

In the standard migration shift-share, the shift terms g, are the real change in the number of people
leaving origin o across years. The argument for exogeneity comes from an assumption that past
shares are unrelated to current period changes in outcomes, except through the labor and composition
channels. Since our specification is in differences, this is comparable to a parallel trends assumption
in a difference-in-differences design, but with many individual treatment exposures to the aggreage
shift treatment (Borusyak et al., 2025; Goldsmith-Pinkham et al., 2020). This may be violated in
cases where changes in particularly large labor markets drive go+ or when country-wide shocks affect
both the total outmigration rate and particular destinations (Jaeger et al., 2018). Many migration
paper have considered instrumenting for shifts in the outmigration rates from origins using push
shocks (Mullins and Bharadwaj, 2021; Boustan et al., 2010; Bazzi et al., 2023; Kamuikeni and Naito,
2024). If the push shocks are plausibly uncorrelated with destination outcomes, then a zero-stage
regression of outmigration on push shocks can isolate exogenous variation in migration shifts. I
consider the total outmigration from a given origin o and year ¢ as a function of a set of past shocks

shocko,t—y, where the shocks are measured at some lag y from the current period:

got = wilog(Shock)oe,t—y + Vo + dst + €0t (16)

I include a linear time trend ¢ and origin fixed effects v,*. T substitute these predicted outmi-
gration rates go; for the raw shift g,; in equations 10 and 13.

Past work on the historic US has leveraged a variety of local economic conditions and weather
variables (Boustan et al., 2010; Bazzi et al., 2023). In developing countries, estimates of migration
elasticities to income or other shocks vary by context. For example, income shocks have been shown to
move migration both positively and negatively depending on the country and time period (Marchiori
et al., 2012; Bazzi, 2017; Shrestha, 2017). My strategy is to consider a set of plausible local shocks
that may move outmigration. In a zero stage, I consider each shock and its lags separately, and then
perform a joint estimation of the relevant shocks to predict the outmigration rate. I consider climate

variables, conflict and international commodity price changes, weighted by local exposure.

3.4 Predicting Settlement Shares with Pull Characteristics

Even with a predicted flow estimated for g, another concern may be that previous period settlement
patterns are correlated with current period labor demand shocks in destinations. This may be the
case if a given settlement of migrants was driven by a previous labor demand shock, and demand
shocks are serially correlated in destination (Jaeger et al., 2018). Instead of using past settlement

patterns as exposure shares, I consider replacing the shares with a gravity-model prediction of which

4 Another option would be to use year fixed effects in this regression. As noted by Mullins and Bharadwaj (2021),
this isolates variation in the shock between counties in the same year. But this specification considers only short term
adjustments to weather. Because my migration adjustments are across decades, I substitute the year fixed effects for state
specific linear time trends. This allows for detrended variation within origins over time to predict the migration rate.
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destinations migrants are likely to choose. In particular I construct instruments for settlement shares
of origins in destinations as a function of the o-d distance between regions and the interaction of
distance with a set of “pull characteristics".

I estimate migrant shares of o in d as
Oodt = w1 Pullg x log(Dist)od + walog(Dist)oeq + wslog(Dist)od * Za + ta + Vo + V¢ + €odt 7)

. t
Where 0,4 represents the migrant shares oot = ———<24t—. The vector Z, represents a set of

count gy *
historical destination characteristics that predict the igractivedrtless of destinations. We can think of
these as historical shocks that predict which locations are more predisposed to urban growth. The
key is that these pull characteristics Z are not correlated with contemporary shocks to demand. In
particular, we use distance to colonial rail lines, mineral deposits and portage sites as predictors of
destination attractiveness. We run the same regression to separately estimate mo4; for our prediction

of diversity change.

3.4.1 Historical Pull Characteristics as Predictors of Agglomeration

My pull characteristics draw on historical sources of agglomeration unrelated to contemporary pro-
ductivity. Colonial railroads were often built to connect coastlines to a particular resource in the
interior of the country. An example is the British Uganda railway, which connected Mombasa on
the coast to Lake Victoria for geopolitical reasons. This railway incidentally also increased the pro-
ductivity of regions that lay along the least-cost path between these points. Human settlements
grew everywhere along the railway, and the railway’s path within Kenya predicts the location of
contemporary Kenyan cities (Jedwab et al., 2017). In Jedwab and Moradi (2016) the authors show
that colonial rails continue to predict urban agglomeration, long after the rail lines fell into disuse.
I calculate a distance to the nearest colonial rail line as a predictor of a destination’s attractiveness,
or “agglomeration potential".

I next consider a destination’s propensity to be a portage site (Bleakley and Lin, 2012). Maritime
trade often requires ships to move inland from the coast along navigable rivers. Sharp changes in
elevation along rivers create rapids and waterfalls, preventing large ships from traveling further. It
becomes necessary to create infrastructure at the point at which a river is no longer navigable to
transfer goods from ships to land transport. Prior work in the US has shown that many US cities
developed along the Atlantic Seaboard Fall Line, which creates a point of elevation change at which
inland rivers are no longer navigable on the east coast (Bleakley and Lin, 2012). Using the same
logic, I create a prediction of rapids and waterfall locations along African rivers. Non-navigable
river segments are predicted using HydroSHEDS data on river discharge. In particular I measure the
change in river discharge (cubic meters per second) along each river network. I define possible portage
sites as places where the size class of a river, which is a logarithmic function of discharge, changes.
Each potential portage site is then saved as a point in space, and joined to the administrative census
regions. Figure 7 shows an example of predicted portage sites along the Congo River, along with a
map of the river network and associated cities. We see for example that the mouth of the river in
the West shows a high portage propensity near where the Congo River has large rapids that precede
the city of Kinshasa.

Last I consider historical mineral deposits as a predictor of past urban growth. This intuition
follows Combes et al. (2010) in using geological factors as an instrument for contemporary agglom-
eration. While deposits should be related to historical roads and infrastructure, they should not be
related to contemporary demand shocks. Using interactions of the pull characteristics and origin-
destination distance, I instrument for settlement shares for each origin-birthplace pair in a baseline
period. I then merge these predicted shares with the outmigration shifts from the baseline analysis.

In an additional section, I explore a second use for these historical pull characteristics in estimating
long-run dynamics. The main results of the paper consider contemporary changes in diversity and

migrant labor across 10-year census periods. To understand the longer term relationship between
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Figure 7: Portage Sites, DRC Example
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Notes: This figure shows an example of the portage score estimation for the portage pull characteristic. The left panel shows a
map of the Congo river network, with locations of cities and rapids. On the right I plot my estimated portage points, which are
located in bright yellow. All colors reflect nearest distance to these estimated portage sites, which is our portage score.

migrant diversity and urban growth, I need a strategy that can be estimated in a cross-section,
and doesn’t rely on data that captures differences over census years. The ideal experiment would
place urban centers at random locations across Africa, and expose them to different levels of migrant
worker diversity. Then I would compare the growth prospects of cities located in more or less dense
areas, with more or less worker ethnic diversity. To proxy for this idealized experiment, I run a
cross-sectional regression that interacts my historical instruments for agglomeration with historical
measures of regional diversity. I use my agglomeration insturments as predictors of city location,
and evaluate outcomes in cells that were historically likely to agglomerate. The interaction between
the agglomeration instrument and regional diversity measures allowes me to compare two cells that
were both predicted to agglomerate, but were exposed to different ex-ante levels of worker diversity.

The empirical strategy is discussed in greater detail below.

4 Results

In this section I will first discuss the results of the nonlinear migration shift-share instrument using
standard outmigration shifts and pre-period settlement shares. I will then discuss results from
different predictions for shifts and shares using pull and push shocks. I show zero-stage regressions
of push shocks predicting outmigration rates at the birthplace level, and then show the results for
the first and second-stage SSIV.

In Section 4.1, Table 2 and Table 3 show the first and second stage results of a regression of

outcome in destination d and time ¢, instrumenting for A¢ and Adiv:

Ayq . = aAld/Tt + 'yA%; + €at (18)

I find that level increases in migrant labor size predict increases in city size, as measured by
average light density change, but do not correpsond to changes in per-capita light density growth.
Increased migrant labor causes cities to grow, but does not map to clear effects on either productivity
growth or urbanization. As the migrant labor pool becomes more diverse, cities grow slower and
have lower productivity in terms of light density changes. However, increasing diversity of migrants
predicts higher rates of urbanization, as captured by an increasing non-agricultural labor share.
This suggests that migrant composition may have a positive benefit on industry mix, and yield
long-term gains even if there are short-run costs. This argument is substantiated in the long-run

estimates of diversity and city growth produced in Table 12. In the long-run, I find evidence of
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positive interactions between diverse migrant labor and historical productivity shocks, suggesting
that benefits of migrant composition manifest over longer periods.

In section 4.2 I first consider the effect of push shocks as an instrument for the measured
birthplace-level shifts go+. I find that drought predicts lower outmigration, while conflict predicts
higher outmigration from birthplace. I find heterogeneous effects of prices across commodity type
and time horizon. Leveraging a combination of push shocks to predict go:, I re-run our 2SLS regres-
sion and find that the first stage succeeds in predicting changes in labor size and composition. I find
that the effects of migrant labor size are consistent, and that migrant diversity continues to predict
higher urbanization rates.

In section 4.3 I instrument for settlement shares using the interaction of distance with the mea-
sured destination-level pull characteristics. I show consistent results of migrant labor size causing
lower productivity growth in terms of light density per capita. However, the joint F-statistics in this
final exercise are too weak to draw strong conclusions.

In section 4.4 I consider heterogeneity in the returns of migrant diversity by evaluating a natural
experiment. I leverage the fact that South Africa’s Apartheid regime generated high migration
barriers, which were suddenly dropped in the 1990s. The end of migration restrictions for black
workers provides a plausibly exogenous shift in the outmigration rates (got) from South Africa’s
native homelands. Following the baseline shift-share model, I instrument for changes in migrant
labor size and diversity at destination. In this exercise I isolate variation in the composition of the
black migrant composition, rather than the relationship between the black and white population.
While the estimates are weaker due to low sample sizes, I find that the impact of migrant diversity
in this context is inverted. Black migrant diversity in South Africa contributes to higher city size
growth and city productivity. I interpret this as evidence that some African states are able to

overcome linguistic and ethnic differences and benefit from diverse birthplace composition.

4.1 Baseline Results: Standard Shift-Share with Nonlinearity

Table 2 presents the results for the first stage of the aggregate shift-share, as described in equation
9. The predicted variables are the aggregations of baseline shares in the previous census years, and
aggregate shifts across census years. The linear and nonlinear shift-share instruments are strong
predictors of the real differences in migrant labor and migrant diversity. Surprisingly, predicted
[ also predicts lower diversity (higher HHI), which means larger total migration shifts are typi-
cally also more homogeneous. We’d normally expect larger shifts in migration to require a broader
composition, as migrants come from further and further locations to meet a destination’s labor de-
mand. The inverted correlations between diversity and migrant labor provide further evidence that
the relationship between the two instruments is nonlinear. The jointly calculated F-statistics and
Sanderson-Windmeijer values are presented in Table 3.

Panel A in Table 3 gives the OLS estimates of a regression of migrant labor and diversity on
light outcomes. Column 1 measures the standardized change in average light density, while column 2
measured the change in the log of per-capita light density. These measures capture different aspects
of light density change at destination. The first is related to city size and extent, as expanding cities
increase average light density. The second has historically been compared to GDP /capita growth.
As other measures of urban productivity, I include changes in the non-agricultural labor share and
changes to the housing quality index, both measured from census data. I find that a 1% increase in
migrant labor size corresponds to a 0.19 SD increase in average light density, and a .76% decrease
in light density per capita growth. The diversit term is measured as changes in a 0 to 1 measure of
diversity. Moving from a completely homogeneous to a perfectly heterogeneous migrant labor pool
is associated with a 1.3 standard deviation drop in average light density and 3.4% reduction in light
density per capita growth. I find that an increase in migrant diversity is also related to a substantial
increase in non-agricultural labor share. Going from 0 to 1 on a diversity measure is associated with

0.86 percent point increase in the non-agricultural labor share.
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Table 2: Census Birthplace Shift-Share First Stage

(1) (2)

Migrant Flows

A/ A div
Predicted A ¢ 0.452 -0.004
[0.027]***  [0.001]***
Predicted A div 1.847 0.558
[0.447]**  [0.110]***
Mean Dep. 7.58 -0.01
Observations 829 829

Note: This table estimates the first-stage regres-
sion of predicted on real changes in migrant labor
and composition realq; = am + 'yAmt +
v+ pe. Alis the logged difference in total migrant
labor in destination d between census years. The
predicted value is the shift-share instrumented
change in migrant labor. Adiv is the difference
in the negative HHI between census years for all
non-native residents in location d. The predicted
value is the estimated change in HHI based on the
relative aggregate shifts and shares across origins.
Regressions include fixed effects for country and
year. Data for this table comes from an origin-
destination panel of workers in African IPUMS
Census samples. * p<0.01, ** p<0.05, *** p<0.01.

Panel B in Table 3 shows the second stage regression using the aggregate shift-share instruments
for migrant labor and diversity. The OLS and IV results are broadly consistent. Total migrant labor
size is positively related to city size growth, but negatively related to per-capita productivity growth.
The size of the coefficients are larger. A 1% increase in migrant labor size yields a .3 SD increase
in average light density, and a -2% drop in per-capita light growth. A 0 to 1 increase in migrant
diversity reduces average light density by -2 SD, and per-capita growth by -10%. The change in the
non-agricultural share is more than a 1 for 1 increase.

To better interpret these measures, I take a set of censuses from non-African developing countries
and replicate the shift-share exercise using available birthplace data from these countries. I then
measure light density changes across census years for these countries. The strength of the linear and
nonlinear shift-share instrument varies across these countries. I take the estimated coefficient on
changes in migrant labor and migrant diversity, and plot them in two dimensions to compare with
the African sample. I find that my esitmated impact of migrant labor size corresponds to higher city
size growth and lower productivity growth relative to other developing countries. This suggest that
level changes in migrant labor increase African city sprawl and extent without translating to faster
per-capita growth. Across both light density measures, the African estimated impacts of migrant
diversity are much lower than the non-African sample. The impact of migrant diversity on lower city
night light density and per-capita growth is nearly double the estimates of non-African developing
countries.

Table B3 shows the same regressions but for alternative destination outcomes. I include the levels
of log light density, the change in services labor share, and the levels of housing wealth. share of the
native workforce dedicated to services. I find that higher migrant diversity predicts higher services
share, lower average light density in levels, and higher average levels of housing wealth. These level
relationships between migrant diversity and light and housing levels suggest that migrant diversity

is associated with destinations that may be smaller but wealthier on average.
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Table 3: Census Birthplace Shift-Share Second Stage, Migrant Flows

Panel A: OLS Results

(1) (2) (3) (4)
A Lights A Log(Lights/Capita) A Non-Agriculture Share A Housing Quality

AL 0.189 -0.763 -0.030 0.039
[0.043]*** [0.079]*** [0.016]* [0.041]
A div -1.375 -3.397 0.860 -0.453
[0.360]*** [1.080]*** [0.278]*** [0.512]
Mean Dep. -0.00 3.31 0.09 0.01
Observations 829 829 634 671

Panel B: Shift-Share IV
A Lights A Log(Lights/Capita) A Non-Agriculture Share A Housing Quality

Al 0.296 -2.081 -0.060 0.126
[0.100]*** [0.173]*** [0.036] [0.092]
A div -2.091 -10.304 1.310 -0.135
[0.703]*** [2.757]*** [0.586]** [0.695]
Mean Dep. -0.00 3.31 0.09 0.01
Observations 829 829 634 671
Kleibergen-Paap Fstat 16.462 16.462 13.716 26.970
Sanderson-Windmeijer ¢ 245.593 245.593 141.084 106.168
Sanderson-Windmeijer div 27.686 27.686 23.386 19.570

Note: This table presents the results of a second-stage regressions of instrumented changes in migrant labor size and
composition on destination productivity outcomes. Panel A presents the OLS estimation of changes in migrant labor and
diversity on light density outcomes. yq,+ = aAlg,¢ +vAdivg,s + vie. Panel B presents the IV 2SLS estimation of changes in
migrant labor and diversity on light density outcomes. The original harmonized range of light density is from 0 to 63. The
first column outcome is the standardized change in average light density, while the second column is the log change in light
density per capita. The third column outcome is the change in labor share in non-agricultural industries, and the fourth
column measures changes in housing quality, measured by a principle component of housing characteristics. All regressions
include country-year fixed effects. Data for this table comes from an origin-destination panel of workers in African IPUMS
Census samples. * p<0.01, ** p<0.05, *** p<0.01.

Figure 9: Comparing Migration Estimates to Other Samples
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Notes: This figure compares the shift-share migration estimates for A¢ and Adiv to a sample of other countries available from
IPUMS. The coefficients of the SSIV are plotted in 2-d space. The same shift-share estimate represented in Table 3 is estimated
at the second administrative level for Cambodia, Chile, Indonesia, Mexico, Peru and Thailand. For each country, the available
birthplace data is used to calculate migrant labor size and diversity. Birthplace is at the state level for Mexico, province for
Peru, Thailand and Indonesia, commune for Chile, municipality for Colombia, and district for Cambodia. IV regressions include
country-year fixed effects. Gray bars plot the standard errors from the SSIV. Horizontal bars represent the SEs on the diversity
coefficient, while the vertical bars represent the SEs on the labor coefficient. Coefficients for labor and diversity in Table 3 are
presented in red. The original harmonized range of light density is from 0 to 63. The first panel outcome is the standardized
change in average light density, while the second panel is the log change in light density per capita. Data for this table comes from
an origin-destination panel of workers in African IPUMS Census samples.
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4.1.1 Robustness Checks of Shift-Share

I perform a variety of robustness checks for our results. To address concerns about the correlation of
outcomes like light density across administrative regions, Figure B9 and Figure B10 show robustness
to Conley spatial standard errors across a variety of distance bandwidths. Next I test the sensitivity
of our results to changes in our sample. Figure B11 and B12 show how the estimates vary when
dropping individual countries from the sample. Last I check the results when replacing the real
estimated birthplace shocks with randomly distributed placebo shocks. Figures B13 and B14 show
how the IV results appear in response to placebo shocks.

In these robustness results, I find some sensitivity to country drops, due to the short-panel
structure of our data. Results are robust to spatially correlated errors across bandwidths. The
placebo shocks help us understand how our shift-share results leverage variation from the shifts and
shares portions of our instrument construction. While placebo shocks produce zero-results for our
diversity estimator, the logged light density per capita outcome in the labor shift-share estimate is
biased upward under placebo shocks. This suggests that some identifying variation is coming from
the settlement shares. The prediction of settlement shares leveraging distance and pull characteristics

will allow us to isolate exogenous variation in settlement shares.

4.2 Instrumenting Outmigration Shifts with Push-Shocks

Next I look at the estimation results when instrumenting for aggregate shifts using push-shocks. As
described in the empirical strategy, I predict the aggregate shifts in migrant labor using shocks, or
the changes between origin-destination pairs. We present the results of this analysis in three parts.
First, we estimate zero-stage relationships between the raw number of people leaving birthplaces and
different potential migration shocks. We find that climate and price variables do predict population
movements at different lags from the contemporary period. Leveraging this result, we then estimate a
first-stage regression that leverages predicted go+ variables in our shift-share design, producing push-
shock motivated instruments for migrant labor size and migrant composition. We find that the push
shock version of our first stage is still able to predict changes in both migrant labor and migrant
composition. Next, we leverage this first stage to look at our destination productivity outcomes.
While the results for migrant labor effects remain consistent, our second stage for diversity is too weak
to consistently estimate an effect. We conclude that the benefits of migrant labor density outweigh

potential costs of migrant diversity, at least among migrants motivated by birthplace shocks.

4.2.1 Zero-Stage Regressions of Migrant Flows on Shocks

Table 4 shows the results of regressions of the log population from o in destination d on shocks at
different lags from the current period. The first column includes country fixed effects, the second
column includes birthplace fixed effects, and the third column includes 10-year lags of the given
variables. The outcome in columsn 1-3 is the number of people living outside of the given birthplace
in a given year. I find that conflict consistently predicts greater outmigration. Contemporary drought
conditions prevent migration, which is consistent with a model where negative wealth shocks prevent
households from migrating (Bazzi, 2017). High agricultural prices in the contemporary period also
encourage migration, which is also consistent with a model where positive wealth shocks increase
migration. Different shocks to birthplaces may not only drive different levels of outmigration, but
also may change the skill-level composition of the marginal migrant. If the type of workers who leave
in response to high commodity prices are different from workers that leave in response to conflict,
then changes in migrant outflows also reflect average skill level changes. Columns 4-6 show the results
when the population counts are weighted by human capital, defined as schooling years for workers
18 and above. These labor efficiency units for a given origin-destination pair are an aggregation
of these weighted population counts, defined as le,q = va hi, where h; are schooling years for an

individual ¢ from o living in d. The results are fairly consistent when using labor efficiency unites
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Table 4: Predicting Outmigration with Contemporary and Lagged Shocks

1 @) 3) 4) (5) (6)
Migrant Flow Labor Efficiency Units
log(N) log(IN) log(N) log(le) log(le) log(le)
Drought -1.308 -0.288 0.002 -14.324 -23.666 -23.926
[0.393]*** [0.263] [0.259] [0.984]***  [1.393]***  [1.423]***
Agricultural Price 0.168 0.287 0.676 -0.010 -0.043 1.002
[0.067]** [0.064]***  [0.077]*** [0.186] [0.288] [0.398]**
Mineral Price -0.010 -0.048 -0.131 0.012 0.040 -0.229
[0.062] [0.068] [0.067]* [0.144] [0.283] [0.282]
Conflict 0.018 0.016 0.002 0.000 -0.016 0.019
[0.004]***  [0.004]***  [0.004] [0.010] [0.015] [0.018]
Year 7.068 6.815 5.503 4.483 7.173 2.533
[0.944]%**  [0.578]***  [0.604]***  [2.458]*  [2.916]** [2.958]
Year? -0.002 -0.002 -0.001 -0.001 -0.002 -0.001
[0.000]***  [0.000]***  [0.000]***  [0.001]*  [0.001]** [0.001]
Lagged Drought 0.472 13.785
[0.694] [3.625]***
Lagged Agricultural Price -0.652 -1.840
[0.087]*** [0.438]***
Lagged Conflict 0.029 -0.070
[0.006]*** [0.024]***
Mean Dep. Var 7.264 7.447 7.447 8.534 8.492 8.492
Observations 2,252 1,944 1,944 1,473 1,423 1,423
Country FE Y Y Y Y Y Y
Origin FE N Y Y N Y Y

Notes: Each column is a joint regression of migrant flows in terms of population or labor efficiency units on a
set of contemporary and lagged shocks. The drought index is the SPEI indicator for drought intensity at an
annual level. The agricultural prices are a weighted regional price exposure aggregated from individual crop
shares and international prices normalized to 2000. Mineral prices are weighted by mineral and mine capacity
in the origin location, and conflict represents the number of ACLED events. Lagged shocks represent average
changes in the variable in the last 10 years. All regressions include country fixed effects. Year is included as a
linear and squared value.

rather than log counts, although the standard errors are larger as the weighting introduces more
dramatic variation. In column 6 there is evidence that lagged conflict has a negative impact on labor
efficiency units, which is a flip in the sign relative to column 3. While past period conflict events
move more individuals out of origins, the marginal migrant is has lower schooling years. As expected,
different types of shocks have different implications for the human capital of the marginal migrant.
In the section on mechanisms, I directly consider the impact of outmigration shifts on changes to
the average skill level at destination.

To better understand the dynamic impact of different shocks on outmigration, Figure 11 plots the
beta coefficients of individual regressions of migration counts against particular shocks at different
lagged periods. Each dot represents a particular shock variable at a particular time horizon relative
to the migration count year. We find that, when estimated separately, the effects of drought and
conflict are consistent across time horizons, but that commodity prices show heterogeneity. Recent
price spikes increase migration, while historical price spikes decrease migration. This suggests that

long-run trends in hig prices for key commodities convince more people to stay in their birthplace.

4.2.2 First and Second Stage Estimates using Predicted Shifts

Panel A in Table 5 shows a first stage regression of equation 9 where the g, growth rates are instru-
mented using the predicted outmigration shifts. The prediction model used leverages contemporary,
1 and 10-year lags of the selected push shock variables drought, conflict and commodity prices. I also
include a linear time trend in our prediction model. I find that the shift-share with predicted shifts
successfully predicts changes in migrant labor size and composition. This result suggests that push-
shocks have an effect on both migrant flows and the mix of migrants that arrive. Panel A of Table 6
gives the second stage regression of equation 9 using the predicted migration shifts. I find that mi-

grant labor size is positively related to growth in city size, but negatively related to per-capita growth
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Figure 11: Predicting Outmigration with Individual Shocks Across Horizons

Beta Coefficient

-2

T T T T T T T T T
Lag10 Lag1 Contemp Lag10 Lag1 Contemp Lag10 Lag1 Contemp
ACLED Price Drought

Notes: This column shows beta coefficients from individual regressions of birthplace-level outmigration rates on individual
shocks at different horizons. The lags are at the 1 and 10-year horizon.

in light density. I also find that increases to migrant labor size predict decreasing levels of housing
quality at destination. This is consistent with a story of increasing migration driving higher housing
prices and slum formation at destination. The estimates for diversity impacts on light density are
too noisy to make an inference. However, I find consistent evidence that incrasing migrant diversity
predicts higher non-agricultural labor share. This lends further evidence that migrant diversity has

consistent impacts on urbanization and structural transformation in destinations.

4.3 Instrumenting Settlement Shares with Pull Characteristics

The placebo shocks exercise from the headline shift-share estimation showed that some variation
in the instrument for labor size changes may be coming from endogenous shares. In this section
I leverage pull characteristics interacted with origin-destination distances to isolate an exogenous
component of settlement shares. The implicit assumption is that the historical pull characteristics,
including distance to colonial rail, mineral deposits and portage sites are unrelated to contemporary

labor demand shocks. In a zero stage regression, I predict the following settlement share variables:

Oodt = w1 Pullg x log(Dist)ed + walog(Dist)oeq + wslog(Dist)ed * Za + tid + Vo + Yt + €odt (19)

Todt = w1 Pullg x log(Dist)od + wa2log(Dist)eq + wslog(Dist)od * Za + ta + Vo + Y + €odt (20)

. t
Where 0,q4: represents the migrant shares coq: = %.
d o

Todt is the baseline Herfindahl
estimate, which behaves as the settlement share for the diversity instrument. I use the same growth
rates go+ as in the baseline shift-share strategy above. Panel B of Table 5 shows the results of the
first-stage, where the predicted shifts are used to produce the instrument aggregates. I find that the
diversity predictor is weaker than in the main shift-share, but still statistically significant at the 5%
level.

Panel B of Table 6 gives the second stage regression of equation 9 using the predicted shifts. I

find that the labor size estimate remains remains negative and significant for per-capita light density
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Table 5: First Stage Prediction of Migrant Size and Composition with Predicted Shifts and Shares

Panel A: Predicted Shifts
(1) (2)

Migrant Flows

AV A div

Predicted A ¢ 0.463 -0.006
[0.034]*** [0.003]**

Predicted A div 2.213 1.607
[2.629] [0.345]***

Mean Dep. 7.88 -0.01

Observations 661 661
Fstat 93.081 12.106

Panel B: Predicted Shares

A/ A div
Predicted A / 0.214 0.005
[0.042]*** [0.002]*
Predicted A div -22.876 3.721
[12.033]* [0.901]***
Mean Dep. 7.77 -0.01
Observations 710 710
Fstat 28.672 9.009

Note: This table estimates the first-stage regression of
predicted on real changes in migrant labor and compo-
sition realq,s = O‘Kl—d,\t + 'yAmt + vt + pe. Al is the
logged difference in total migrant labor in destination d
between census years. In Panel A, shifts are taken from
predicted changes in outmigration across birthplaces,
while shares are pre-period settlement shares from each
birthplace. Shifts are instrumented by drought events,
conflict events and commodity price shocks. In Panel B
shifts are taken from the baseline changes in outmigra-
tion across birthplaces, while shares are predicted set-
tlement shares from each birthplace, leveraging histori-
cal productivity shocks and origin-destination distance.
Historical productivity shocks include distance to colo-
nial rail, distance to mineral deposits, and distance to
portage sites. Adiv is the difference in HHI between
census years for all non-native residents in location d.
Regressions include fixed effects for country and year. *
p<0.01, ¥* p<0.05, *** p<0.01.

growth. I interpret this as strong evidence that level changes in migrant labor size slow productivity
growth, even as they increase city size and extent. The estimates of diversity are noisy. This is
partially a result of a relatively weak instrument. I also consider this suggestive evidence that the
effects of migrant labor size outweigh the effects of diversity.

Across estimation strategies, I find evidence that increasing migrant labor size causes cities to
grow in light density, but lowers per-capita GDP growth. Increasing migrant diversity decreases city
growth, both in level and per-capita terms, but increases the non-agricultural labor share. Migrant
labor size does not have consistent effects on industry mix, reflecting the importance of identifying
both level and composition parameters to understand the aggregate impacts of migration. My results
are broadly consistent with cross-sectional work that finds limited evidence of agglomeration returns
in African cities, and negative impacts of ethnic diversity. My findings on the effects of migrant
diversity on labor allocation suggest long-run urbanization benefits of migrant diversity, which I
explore further in my long-run estimation strategy below.

Using a battery of shocks to birthplaces and historical characteristics of destinations, I predict

both shifts and shares. I find that migration shocks do successfully predict both the size and com-
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Table 6: Second-Stage Effects of Migration on Productivity with Predicted Shifts and Shares

Panel A: Predicted Shifts

(1) (2) (3) (4)
A Lights A Lights/Capita A Non-Agriculture Share A Housing Quality
Al 0.256 -1.387 0.012 -0.299
[0.076]*** [0.157]*** [0.070] [0.130]**
A div -1.849 0.406 2.104 -2.012
[1.521] [4.300] [1.265]* [2.034]
Mean Dep. -0.18 2.43 0.35 0.03
Observations 661 661 465 472
Kleibergen-Paap Fstat 12.788 12.788 13.289 11.121
Sanderson-Windmeijer ¢ 71.251 71.251 43.754 43.862
Sanderson-Windmeijer div 12.810 12.810 13.497 11.174

Panel B: Predicted Shares

A Lights A Lights/Capita A Non-Agriculture Share A Housing Quality
Al -0.283 -3.150 0.612 0.223
[0.264] [0.717]*** [0.185]*** [0.347]
A div 4.546 6.553 -1.331 0.068
[11.405] [8.927] [2.099] [2.731]
Mean Dep. -0.13 2.70 0.23 0.01
Observations 710 710 517 553
Kleibergen-Paap Fstat 9.051 9.051 10.804 4.734
Sanderson-Windmeijer ¢ 11.744 11.744 7.938 8.339
Sanderson-Windmeijer div 9.329 9.329 10.576 5.742

Note: This table presents the 2SLS estimation of changes in migrant labor and diversity on light density outcomes.
ya,t = alAlg + yAdivgy + vie. In Panel A, shifts are taken from predicted changes in outmigration across birth-

places, while shares are pre-period settlement shares from each birthplace.

In Panel B shifts are taken from the

baseline changes in outmigration across birthplaces, while shares are predicted settlement shares from each birth-

place, leveraging historical productivity shocks and origin-destination distance.

The original harmonized range of

light density is from 0 to 63. The first column outcome is the standardized change in average light density, while the
second column is the log change in light density per capita. The third column outcome is the change in labor share
in non-agricultural industries, and the fourth column measures changes in housing quality, measured by a principle
component of housing characteristics. All regressions include country-year fixed effects. Data for this table comes
from an origin-destination panel of workers in African IPUMS Census samples. All regressions include country-year

fixed effects. * p<0.01, ** p<0.05, *** p<0.01.

position of migrant labor. While the effects of labor size remain consistent, the effects of migrant
diversity on light density outcomes are not statistically significant. I find consistent evidence that
migrant diversity increases non-agricultural labor share. The exercise predicting settlement shares
yields a weak first stage. However, I do find that the negative effects of migrant labor size on

per-capita growth rates remains consistent and statistically significant.

4.4 Evidence from a Natural Experiment: Ending Apartheid

South Africa represents a particular case of internal sorting. The end of Apartheid brought a sudden
lifting of migration restrictions that had forced the black population to remain in “ethnic homelands".
These homelands, established by the Native Land Act in 1913, were loosely tied to distinct historical
tribes. Transkei, for example, was a homeland attached to the Xhosa people. While KwaZulu, around
Durban, was the homeland for the Zulu people. The Pass Laws required black South Africans to
carry internal passports to regulate their movement outside of native lands (Amodio and Chiovelli,
2018). While not all black South Africans lived in these ethnic homelands, millions are believed to
have been forcibly resettled in the homelands between 1960 and 1991 (Lochmann et al., 2023). The
Pass Laws were repealed in 1986, followed by the Native Land Act in 1991. These events amount
to a sudden reduction in migration costs for black South Africans from different ethnic origins, who
could now move freely to new destinations. Leveraging municipality level data from censuses between
1991-2022, we can study the long-term labor market effects of this migration shock.

Figure 12 shows the distribution of African ethnic homelands during the Apartheid era in South
Africa. The panel on the right shows the distribution of language families, as measured in the

Ethnologue dataset of languages. These figures give a sense of the correspondence between the
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Figure 12: Ethnic Homelands under Apartheid, South Africa

Languages
Afrikaans
English
Nama
Ndebele
Norther Sotho
Ronga
Southern Sotho
Swati
Tsonga
Tswana
Venda
Xhosa
Zuly

Homelands
Bophuthatswana
Ciskei
Gazankulu
Kangwane
KwaNdebele
KwaZulu
Lebowa
Qua Qua
Transkei
Venda

(a) Ethnic Homelands (b) Language Families (Ethnologue)

Notes: These figures show the location of South Africa’s ethnic homelands, where the majority of the black population were
forced to settle. The figure on the right shows the distribution of major language families, according to the Ethnologue dataset of
languages.

homelands and particular black ethnic groups or linguistic families. The regions outlined in black
are local municipalities as of 2022. These regions will serve as our units of analysis when studying
regional outcomes after Apartheid.

Between 1986 and 1991, many of the restrictions on internal migration were lifted for black South
Africans. Using census data from 1991 - 2022, we can trace the trajectory of diversity and population
size over this period. While the South African censuses don’t contain consistent information on
subnational birthplace, they do identify native language or mother tongue of respondents. Using
this language information, we can link black respondents to their ethnic homeland using the same
language-ethnic group linking procedure leveraged in the main analysis. For each destination, we
can calculate an ethnic HHI index as the relative diversity of the black population. We don’t include
English or Afrikaans speakers in this index.

Figure 14 shows the change in diversity over time in destinations. The left figure splits destinations
in terms of average distance to ethnic homelands, with the furthest quantile representing destinations
on the west coast of the country. The y-axes capture the negative Herfindahl index of black population
diversity by native homeland, with higher values representing increased diversity. The right figure
considers major urban destinations, and plots the change in the HHI index, rather than the levels.
I find heterogeneous fluctuations in black ethnic diversity across destinations. In levels, the closest
quantile of municipalities to ethnic homelands is the most diverse in terms of the black population’s
ethnic mix. After the abolishment of pass laws, this group experiences a decrease in diversity, as
South Africans depart for further off destinations. The furthest quantile of municipalities experienced
along increase in diversity from 2001 to 2011, nearing the levels of the native homelands. Cape Town,
one of the major towns in the furtherst quantile group, saw a strong increase in diversity from 1991-
1996. This is shown in Panel B, which captures changes to the negative HHI over time. Other major
cities saw clear increases in diversity, represented as points above 0 in Panel B. Though the rates are
less dramatic in terms of proportional changes.

I replicate the baseline shift-share strategy from Table 3, applied to the South Africa case. The
shifts go: are the post-Apartheid growth in migrants from origin o, as defined by their native language,
living outside of 0. The settlement shares are the Apartheid shares of each migrant group living in
a particular municipality. One might instead think to use “distance to homeland" as an instrument
for the settlement shares. However, as seen in the trend figures, migrants did not necessarily travel
to cities close to homelands. Many major cities like Cape Town, far from the native homelands,
experienced sharp shifts in the migrant population.

Table 7 shows the results of a second-stage shift-share. The linear effects of migrant labor flows
are consistent with the headline results. Migrants increase city sizes, but migrant flows do not

produce per-capita light density growth. However, the compositional effects are inverted. Increasing
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Figure 14: Black Diversity in South Africa After Apartheid
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Notes: These figures show change in the homeland composition of the black population in destinations over time. The left figure
shows the HHI score for destinations at different average distances from the native lands in the eastern part of the country. The
right figure shows the change in this HHI measure for major cities, from the end of Apartheid onward.

black migrant diversity causes larger cities and higher per-capita growth in light density. These
results show that the effects of migrant diversity are heterogeneous across locations. South Africa’s
particular history of oppression and black-white conflict may have taken precedence over ethnic

tensions between black ethnic groups.

5 Mechanisms

In this section I consider a few possible mechanisms for the headline result of the paper. Migrant
flows increase city sizes but slow productivity growth. Migrant birthplace diversity causes lower city
sizes and lower productivity growth, but increases urbanization. The negative impact of diversity
is indicative of a nonlinear congestion force that dampens agglomeration benefits in the short-run,
but may yield positive long-run benefits in terms of structural transformation. The “birthplace
composition" measure, or Adiv, is a broad index of diversity. Because it is derived from workers’
differences in birthplaces, there could be many types of diversity captured by this measure. Diversity
in birthplace may be correlated with linguistic diversity, ethnic or religious diversity. To the extent
that different origins may have different skills or experiences, it also encompasses diversity of skill.
I consider a few examples of how birthplace diversity may create short-run negative externalities
through ethnic conflict, difficulties in cooperation related to linguistic distance, or differences in skill

complementarity.

5.1 Ethnic Conflict

The short-run costs of migrant diversity may be a result of urban conflict generated between dis-
parate groups. A standard result in political economy links ethnic diversity in Africa to ethnic
conflict (Arbatli et al., 2020) ®. Most of the evidence of this relationship comes from cross-sectional
associations of diversity measures on geolocated battle events from ACLED or UCDP.

Beyond the normal causality concerns, another challenge for this conflict literature is understand-
ing the role of population size on conflict. Indeed, in the cross-section population size is strongly

positively correlated with conflict. To the extent that diversity and population move together, it’s

5There are debates about the particular functional form this relationship takes, with scholars arguing for different ways
to index diversity and weight relative group sizes as a metric for polarization, fractionalization, etc. The relationship
between relative group size and conflict is not obvious. Many ethnic conflicts, like the Rwandan genocide, seem to emerge
without the need for many groups, or equally sized groups. 1 continue to rely on changes in a negative Herfindahl index,
for consistency with the baseline specification
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Table 7: South Africa Shift-Share Second Stage, Migrant Flows

Panel A: OLS Results

(1) (2)

A Lights A Lights/Capita
Al 0.047 -0.283

[0.016]*** [0.033]***
A div 1.646 1.582

[0.301]*** [0.662]**
Mean Dep. 0.07 -0.15
Observations 798 798

Panel B: Shift-Share TV
A Lights A Lights/Capita

Al 0.083 -0.215
[0.026]*** [0.046]***
A div 4.524 10.525
[1.640]*** [3.161]***
Mean Dep. 0.07 -0.15
Observations 798 798
Kleibergen-Paap Fstat 9.037 9.037
Sanderson-Windmeijer L 374.608 374.608
Sanderson-Windmeijer Div 22.360 22.360

Note: Panel A presents the OLS estimation of changes in mi-
grant labor and diversity on light density outcomes. wyq: =
alAlg, ¢ +vAdivg , + vie. Panel B presents the IV 2SLS estima-
tion of changes in migrant labor and diversity on light density
outcomes. Light density is included with various specifications.
The original harmonized range is from 0 to 63. The first col-
umn gives the log level in the contemporary period, the second
is the logged difference across census years, the third is the non-
logged distance and the fourth divides the light density value
by the population of the administrative region in that period.
All regressions include country-year fixed effects. * p<0.01, **
p<0.05, *** p<0.01.

difficult to disentangle the role that diversity plays independent of population size. If larger popula-
tion centers are naturally more diverse, increased conflict or crime could be due to either force. The
construction of my empirical strategy is able to disentangle these effects.

Following the Bartik style shift-share strategy elaborated in the empirical methods section, I
study the effect of changes in migrant labor size and migrant diversity on conflict outcomes. Table 8
shows the results of this analysis. Conflict is measured as the number of battle events that occur
in a given destination-year, according to the ACLED dataset. I also weight the conflict events by
estimated average fatalities, which is represented as “deaths" in the table columns.

Column 3 presents results for the differenced change in conflict at destination, in response to
changes in migrant labor size and diversity. A 1% increase in migrant labor size adds 0.347 average
conflict events per year. A .1 point increase in migrant diversity increases the number of conflict
events by 0.7 per year. This is strong evidence of a congestion force that affects destinations as larger
and more heterogeneous migrants arrive in destinations. Ethnic conflict may be one mechanism that

reduces light density growth in increasingly diverse destinations.

5.2 Linguistic Distance

A natural problem for migrants moving to new destinations may be learning a new language. If
migrants arriving in a destination speak many different languages, these linguistic differences could
pose challenges for coordination in firms, households, or neighborhoods. A mostly US literature on
assimilation of migrants suggests that closing cultural gaps is an important part of unlocking returns
to migration (Abramitzky et al., 2020). So far none our measures of diversity have tried to weight
differences across birthplaces in terms of cultural or linguistic distance. Two points for why its not

ex-ante obvious that cultural distance is the important mechanism driving our results: (1) This paper
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Figure 16: Conflict and Population Size in the Cross-Section
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Notes: This figure shows the cross-sectional relationship between the number of ACLED battle-events in a region and popu-
lation size, ordered into deciles. The regions defined in this analysis are grid-cells of the African continent of approximately
1000km?. Population is calculated from the Worldpop estimates for 2013. The y-axis measures the average probability of
observing a conflict event in that grid-cell in a given year between 1997 and 2025.

Table 8: Shift-Share Second Stage, Conflict Outcomes

Panel A: OLS Results

1) (2) (3) (4)
Conflict Deaths A Conflict A Deaths
AL 0.410 -0.241 0.347 -0.023
[0.268] [0.296] [0.140]** [0.445]
A div 2.573 -3.249 7.122 1.159
[1.081]** [4.983] [2.074]*** [3.681]
Mean Dep. 1.19 1.26 0.63 0.14
Observations 829 829 581 581
Panel B: Shift-Share IV
Conflict Deaths A Conflict A Deaths
Al 0.719 -1.214 0.738 0.543
[0.588] [0.747] [0.257]*** [0.882]
A div 4.041 -7.763 10.991 -4.733
[2.022]** [6.253] [3.349]*** [8.157]
Mean Dep. 1.19 1.26 0.63 0.14
Observations 829 829 581 581
Kleibergen-Paap Fstat 16.462 16.462 12.030 12.030
Sanderson-Windmeijer ¢ 245.593 245.593 156.499 156.499
Sanderson-Windmeijer div 27.686 27.686 22.170 22.170

Note: Panel A presents the OLS estimation of changes in migrant labor and
diversity on conflict at destination. yq,: = aAlg: + vAdivg,s + vie. Panel B
presents the IV 2SLS estimation of changes in migrant labor and diversity on
conflict at destination. Outcomes include the number of ACLED battle events,
which we call “conflict”", as well as the estimated number of conflict deaths in a
destination across years. We include these outcome both as levels and in differ-
ences. The differenced terms are in raw changes in the number of conflict events
or deaths over time. All regressions include country-year fixed effects. * p<0.01,
** p<0.05, ¥** p<0.01.

looks at internal migration. While many states have an abundance of local indigenous languages, its
also true that most states have a condensed set of national languages. Take Mozambique for example.
While the country hosts a wide variety of local languages and dialects, most people in urban centers
speak Portuguese fluently. (2) There are many examples of conflict or animosity between groups
that are on paper culturally similar (Posner, 2004). Differences in groups over space are often the

result of historical, geographical and political factors that may arise even when groups speak the
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same language.

To consider the role of linguistic distance, I match each administrative region to its majority
spoken language, as according to the Ethnologue, a large geographically coded dataset of world
languages. A useful feature of the Ethnologue is that each language is coded within a nested tree of
language families and sub-families. Oko, for example, is a Nigerian language spoken in Edo state and
part of the Niger-Congo family. Within the Niger-Congo linguistic family, its part of the Volta-Niger
linguistic subgroup. Between any two languages, we can then create a simple measure of linguistic
distance based on how many linguistic families and sub-families they have in common. Oko is related
to Ibo, another Volta-Niger language, but distant from the northern Nigerian Hausa, an Afro-Asiatic
family language.

For each migrant from an origin o in destination d, I calculate the linguistic distance between the
majority language in that given origin and destination pair. Weighting by the total migrants from
each origin into a destination d, I calculate an average linguistic distance index that measures the
average cultural distance between migrants and destination natives. Table 9 presents results from an
OLS regression in first differences, relating destination productivity to changes in migrant labor size
and changes in the average linguistic distance of migrants. As above, these differences are calculated
across census periods. I find that increasing linguistic distance is only weakly related to changes in
light density, but strongly related to an increasing share of non-agricultural labor.

Is increasing linguistic distance captured up by the diversity shift-share instrument used in the
analysis? In Table 10, I regress the measure of average linguistic distance against my first-stage
predictors from Table 2. In levels, higher ethnic concentration is in fact associated with a lower
level of linguistic distance. However, in differences I find the opposite of the expected relationship.
Increasing diversity of birthplace composition predicts decreases in average linguistic distance. That
is, our predictor of changes in birthplace diversity does not simultenously predict changes in linguistic
distance. Therefore, while we do observe an association between changes in linguistic distance and
higher agricultural labor share, my shift-share strategy does not directly map to a levels change in

average linguistic distance.

Table 9: Change in Linguistic Distance and Productivity

OLS Results

(1) (2) 3) (4)
A Lights A Log(Lights/Capita) A Non-Agriculture Share A Housing Quality
A/ 0.217 -0.779 -0.027 0.027
[0.049]*** [0.077]*** [0.016]* [0.036]
A Linguistic Distance -2.812 3.582 4.600 1.701
[1.442]* [5.019] [1.505]* [2.344]
Mean Dep. 0.01 3.32 0.13 0.03
Observations 881 881 685 722

Note: This table presents the OLS estimation of changes in migrant labor and average linguistic distance on productivity
at destination. Average linguistic distance is calculated as the inverse of the similarity between a migrant’s language and
the majority language at destination, weighted by flow size across all migrant groups. Similarity is defined according to
Ethnologue linguistic families. This measure is then differenced across census periods. All regressions include country-
year fixed effects. Clustering is at the second administrative level. * p<0.01, ** p<0.05, *** p<0.01.

5.3 Skill-Level, Segregation and Industry Concentration

The changes in migration discussed in this paper are in terms of the number of people over 18 that
have settled in a destination. While the empirical model is in differences, its possible that the effects
are being partially driven by differential trends in the human capital of the migrants arriving in
destination. Changes in migrant diversity may be related to changes in the average skill level of
the workforce. Another possible channel is through other features of the labor market. If migrants
arriving in destinations bring many diverse skills, they may reduce the industrial concentration of

cities and in-turn diversify production at destination. Lower industry concentration may be a channel
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Table 10: First Stage Relationship of div and Linguistic Distance

First Stage Correlation

Linguistic Distance A Linguistic Distance

Predicted A 1 0.015 -0.002
[0.001]*** [0.000]***
Predicted A div 0.094 -0.027
[0.022]*** [0.010]***
Mean Dep. -0.00 -0.00
Observations 944 944

Note: This table presents a first-stage regression relating the pre-
dicted migrant labor and predicted diversity change estimates from
our shift-share design to average changes in linguistic distance at the
destination. Average linguistic distance is calculated as the inverse
of the similarity between a migrant’s language and the majority lan-
guage at destination, weighted by flow size across all migrant groups.
Similarity is defined according to Ethnologue linguistic families. The
first column outcome is the average linguistic distance of migrants
to destination natives, weighted by the group size of migrants. The
second column outcome is this measure differenced across census
periods. All regressions include country-year fixed effects. Cluster-
ing is at the second administrative level. * p<0.01, ** p<0.05, ***
p<0.01.

through which migrant diversity creates long-run structural transformation.

To study these mechanisms, I consider the impact of instrumented migrant levels and composition
on changes to average worker skill level, industry concentration and industry segregation. Industry
concentration is measured as the HHI of industry labor-share across industries within a region.
Industry segregation is a measure of the extent to which migrants from different origins sort into
particular industries. The measure captures the extent to which industry labor shares for a given
migrant birthplace deviate the population average in that region (7). For a given migrant origin

group o € O living in destination d and working in industry i € I, segregation is defined as:

Seagregation, = #iiﬁw (21)
greg 4= 0O-1 Ny Tod

o=1 =1

Where 7,4 is the fraction of group o in destination d, and 7, is the fraction of group o in industry
i of destination d. N, is the total population of group o in destination d and Ny is the total population
in destination d. Higher values of this segregation index correspond to greater segregation of ethnic
groups across industries within a destination.

Table B4 presents the OLS and SSIV results for changes in average worker skill level, industry
concentration, and industry segregation by birthplace. The model is the same baseline shift-share
examined in Table 3. I find that both increasing migrant labor size and diversity lowers indus-
try concentration, as measured by an HHI of labor-shares. This suggests that migrant flows and
composition introduce increase diversity to the industrial mix of a destination. I also find evidence
that increasing migrant labor size reduces average worker skill level. This is a possible mechanism
by which increasing migrant labor size does not translate to higher per-capita productivity growth.
Low skilled migrants bring down the average skill level of workers, compete for low-skilled wages,
but may not geneate the ideas, businesses and networks necessary to create agglomeration benefits.
I find no evidence that increasing migrant diversity affects the average skill level of workers or the
segregation of groups across industries. While increasing migrant diversity does introduce diversity
to the industry mix, we don’t see evidence that particular migrants specialize within certain indus-
tries. The industry categories are broad, therefore its possible that given more granular occupational

categories different specialization patterns would emerge.
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5.4 Productivity Evidence from Firms

Past work has suggested that ethnic divisions within firms can lower productivity in team-based
production (Hjort, 2014). This suggests a mechanism via poor coordination or discrimination within
firms, rather than outright conflict. In this section, I consider evidence on changes in diversity
within firms, and the subsequent impact on productivity. An ideal microeconomic dataset to study
the role of migrants in productivity would include firm-level information on input-output, as well
as detailed characteristics of the firm’s labor force. While some enterprise level surveys exist for
African countries, few provide information on workers, including ethnic identity or birthplace. Two
exceptions come from the “Regional Programme on Enterprise Development (RPED)", led by the
World Bank in collaboration with the Centre for the Study of African Economies (CSAE). In the
90s and early 2000s a panel of manufacturing firms was collected for Ghana and Tanzania which, for
some waves, include data on the ethnic composition from a sample of workers.

These panels were collected between 1992 and 2003, recording basic characteristics of the firm
such as wages and labor size. In addition, a worker supplement is collected for each firm in which
up to 10 workers are interviewed and asked about their experience and background. I leverage
this data to examine associations between firm-level productivity, number of workers and worker
ethnic concentration. Table 11 shows the results of firm-level regressions of productivity measures
on firm labor size and worker ethnic concentration. Outcomes include log wages per worker, and
log manufacturing output value per worker. Columns 1 and 3 include fixed effects for country and
year, while columns 2 and 4 look at within-firm variation over time using firm fixed effects. I find
some evidence that in the cross-section, firm productivity is increasing in labor size and decreasing
in ethnic concentration. This is the opposite association of what we’d expect to see if ethnic diversity
hinders firm productivity. Looking within firms over time, we see evidence that firms are becoming
less productive as they grow in size, with no evidence of an effect by changing ethnic HHI.

These samples are small, and the analysis is not causal. However we don’t see evidence of an

ethnic diversity penalty within or across firms that has been posited by microeconomic papers.

Table 11: Ethnicity and Firm Productivity in Ghana, Tanzania

Log(Wages/Worker)  Log(Wages/Worker)  Log(Output/Worker) Log(Output/Worker)

Log(labor) 0.299 -0.903 0.361 -1.326
[0.053]*** [0.136]*** [0.104]*** [0.511]**
Ethnic HHI -1.067 0.126 -0.457 0.868
[0.269]*** [0.224] [0.530] [0.843]
Mean Dep. 15.19 15.78 12.82 13.44
Observations 511 332 496 330
Country FE Y N Y N
Wave FE Y N Y N
Firm FE N Y N Y

Notes: This table shows the result of a regression of log wages or output per worker on firm size and worker ethnic
concentration log(%)ist = p1l + B2HHI + €;5¢. Where i is firm, s country, and ¢ is survey wave. The first column
in each pair includes country and survey wave fixed effects, while the second includes firm fixed effects. Output
represents the total monetary value of manufacturing output, while wages reflect the total wage bill. Each regression
also controls for the number of workers that data was collected on for the HHI variable, up to 10 workers. * p<0.01,
** p<0.05, *** p<0.01.

5.5 Migration and Ethnic Attitudes

Are migrants more or less prone to ethnic conflict relative to natives or non-migrants? It may be
that the act of migrating itself is associated with increasing or decreasing tribalismm among ethnic
groups. For example, a migrant from a minority group may choose to move to a city, and begin
to experience economic disenfranchisement or discrimination. In turn, the migrant becomes more
allied with their ethnic group, and deepens their coethnic preference. The inverse of this process is
also possible. Work with panel data in Kenya has shown reduced tribalism and increasing national

identity in individuals after they migrate to cities (Kramon et al., 2022). This suggests that urban
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centers play a diffusing role in ethnic tensions. Using Afrobarometer data, I explore observational
differences between migrants and non-migrants in terms of their reported national identity and future
economic expectations. I use the same model of observational returns leveraged in Table 1. I replace

our outcome of interest with a measure of ethnic allegiance or economic disenfranchisement:

Attitudes;; = f1Migrant; + S2Migrant, - Distoq
+ BsMigrant, - CoethShare,q + Z; + Xoa + Wa + vst + 7o + € (22)

Where Distoq is the log distance between the ethnic homeland and the destination, Migrant; is
a dummy for migrant status, and CoethShareoq reflects the fraction of individuals in d that are from
ethnic homeland o. We include fixed effects for country-year vs:, and 7, to isolate variation within
an ethnic group. The controls for the individual Z; include age and schooling, while X,4 includes
the level of o-d distance and coethnic share, and W includes destination log population. Attitudes;:
is a measure of ethnic or economic attitudes, “Nationalism" or “Expectations". National identity,
or “nationalism" is an individual’s response to a question about how much the individual identifies
with the nation relative to their ethnic group. We use it here as a measure of ethnic allegiance.
Future expectations is a question styled after the Michigan Consumer Confidence Survey, which asks
individuals if they expect economic conditions to improve in the next year. We use this question as
a measure of economic disenchantment or distress. Table B5 shows these results, with no significant

differences between migrants and natives in terms of national identity or economic expectations.

6 Urban Growth and Diversity in the Long-Run

The analysis in this paper has focused on decade level changes in migrant labor size, composition
and productivity. The positive effects of migrant diversity on non-agricultural labor share suggests
that migrant diversity may affect fundamental characteristics of the economy at destination. It
may be that the benefits of such effects manifest over longer time horizons. The problem with
studying longer-run effects of labor size and diversity on growth is a lack of data. Most early African
censuses, where they exist, don’t include ethnic or birthplace identifiers. In addition, few measures
of subnational productivity exist in earlier periods.

In this section I leverage the historical pull shocks constructed for the shift-share instrument to
estimate a long-run effect of labor size and diversity on urban development. The historical produc-
tivity shocks, including colonial rail lines, portage sites and mineral deposits serve as agglomeration
instruments, which can be used to predict contemporary city locations. The empirical strategy takes
inspiration from the literature on estimating labor demand curves from shocks to labor demand (Di-
amond, 2016; Notowidigdo, 2020) and housing supply elasticities (Saiz, 2010; Guedes et al., 2023).
In this work inverse demand and supply elasticities are estimated using an interaction between a
labor demand shock and a housing supply constraint.

I start from the following equation. For each region 4, the long-term relationship between diversity,

population and productivity is described as:
Yi = Bo + B1ls + Badiv; + X + € (23)

where ¢; and div; capture a destination’s size and diversity in the long-run, and X; is a vector
of geographic controls. This cross-sectional regression is similar to the associations estimated by
Montalvo and Reynal-Querol (2021). What I add to this framework is a causal inference strategy.
Since there is no long-run panel data on diversity div; over time, I use a historic fractionalization index
that captures each region’s exposure to historical ethnic groups defined by anthropological maps. I
use the Murdock Map, and define each region’s historical diversity exposure as the distribution of

land occupied by different ethnic homelands. A region’s contemporary diversity is proxied by the
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interaction of this historical exposure to different groups, and historical labor demand. Intuitively,
areas become more diverse as labor demand shocks compel them to draw in labor from surrounding
areas. The more inherently diverse this potential pool of labor (due to the historic spatial distribution
of groups), the more diverse the city will be. Substituting historic diversity HistDiv; for div;, 1

estimate:

yi = Bo + Bili + B3HistDiv; 4+ BaHistDiv; * £ + X; + € (24)

where HistDiv; captures a region’s potential exposure to diverse migrants based on the Murdock
Map, and /¢; captures a measure of employment density. The interaction of fractionalization and
labor is the variable of interest. The interaction captures how historic fractionalization affects the
labor demand elasticity, and in turn output and productivity. HistDiv represents a fixed regional
quality, and (4 represents an elasticity of urban growth with respect to this quality.

Population density is an endogenous variable. In addition, HistDiv; by itself will be related to a
variety of geographic fundamentals that governed the distribution of groups over space (Michalopou-
los, 2012). Our IV strategy will predict population density and its interaction by exploiting temporary
shocks to regional productivity AA; that drove labor demand historically, but that are no longer
correlated with unobserved productivity fundamentals today. I use these historic productivity shocks
as agglomeration instruments, and predict both labor size { and the interaction of labor size and
diversity £ * HistDiv:

éi = o+ ,BlAAZ =+ ﬂzAAZ * HistDiv; + ws + € (25)
Ui * @le =a+ ﬁlAAZ + ﬁQAAq, * HistDiv; + ws + €; (26)

AA; represents one of the three historical pull shocks, either distance to colonial rail, distance to
portage site, or distance to a mineral deposit. w, are state fixed effects. Using these regressions as
two first-stages, I will then estimate the second stage effect on contemporary development outcomes
for each region in the cross-section. The exclusion restriction requires that a historical productivity
shock AA; is uncorrelated with unobserved other factors in ¢; that drive outcomes of light density,
wealth, lights/capita,and conflict in the contemporary period. Note we do not need that HistDiv;
is uncorrelated with A A; in this estimation.

I split the African continent into equally sized hexagonal grids of approximately 1000km?, which
I use as my regions ¢. For each grid I aggregate data on conflict, light density, population across years
and the geographic variables including malaria suitability, ruggedness and soil suitability. Figure 17
shows an example of how the Murdock Map is used to calculate a historical diversity index for each
region. This is a fractionalization index of the relative share of each grid taken up by a particular
Murdock group. Higher values imply more diversity.

T use a dummy for labor size ¢ that marks regions as cities (or high density) if they overlap with
a city of over 20k inhabitants in 2015, as defined by the urban database Africapolis. Table B6 shows
the results of OLS regressions for different development outcomes y following equation 24. Panel A
shows results using a city dummy for ¢, while panel B uses an interpolated population measure at
the grid level, taken from the Worldpop dataset. Urban agglomerations have higher light density,
and higher conflict. Due to the high relative population size, per capita measures in these regressions
are negative relative to less populated regions. In the cross-section, I find that cities located in more
diverse areas have a higher lights/capita value, but also higher incidence of conflict as measured by
a summation of ACLED conflict events.

Table 12 shows results for our three instrumental variable strategies following the historical pull
characteristics described in the Empirical Strategy section. I find that across strategies, high diversity
places that receive a productivity shock have higher values of our preferred development measure,
lights/capita. The baseline negative coefficient on diversity is in line with the correlations studied
in past political economy work on the relationship of diversity and development. While baseline

diversity has a negative coefficient, the elasticity of urban growth with respect to diversity is positive,
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Figure 17: Data Examples from Nigeria

Fractionalization Share
06

(a) Murdock Map (b) Grid Fractionalization

Notes: This figure shows examples of the grid-level data constructed from a historical map of diversity. Fractionalization is
calculated as the dispersion in the share of each grid taken up by different ethnic homelands.

suggesting that in the long-run diversity of ethnic groups can be a boon for urban growth.

7 Conclusion

This paper disentangles the effects of migration levels and composition on urban African productivity.
I build a panel that proxies for origin-destination migration flows using census data on reported
birthplace and ethnicity. Then I implement a shift-share instrument that simultaneously identifies the
linear change in migration labor size and nomnlinear birthplace composition. I find that destinations
that receive more migration labor grow in light density, but are not more productive in per-capita
terms. This is consistent with a story of growing African cities with limited productivity returns
or urban structural transformation (Jedwab et al., 2025). Migrants that are more diverse cause
lower growth in levels and per-capita terms. However, increasing migrant diversity also yields higher
non-agricultural labor force shares in destinations. Migrant diversity creates short-run costs, but
seems to generate long-run benefits to destinations in terms of urbanization. The results are broadly
consist when I instrument for shifts using plausibly exogenous push shocks to outmigration, including
international commodity prices, conflict events and drought conditions. In zero stage regressions,
I find evidence that these channels move outmigration from origins, and have predictable effects
on migrant labor size and composition. This fact has implications for how we study the impact
of migration shocks, as the spatial dispersion of shocks changes both the size and composition of
migrants.

I explore several mechanisms to better understand the effect of migrant labor size and diversity on
destinations. I find evidence that increased migrant diversity and migrant labor size increase urban
conflict. I don’t find evidence that diversity hurts productivity at the firm level in a panel of firms.
The mixed results for diversity across different outcomes lead me to pursue two further exercises. In
a study of the Apartheid period of South Africa, I leverage the repeal of the Pass Laws as a migration
shock event that generates high outmigration shifts from native homelands. Measuring the size and
composition of the black migrant labor force and estimating the same baseline shift-share yields an
inverted effect of diversity. Productivity of South African municipalities is increasing in birthplace
diversity, suggesting that South African cities benefit from the diversity of the black population.
The particular history of South Africa’s conflict between the black and white populations may have
diffused tensions across different black African ethnic groups.

Lastly, I consider the long-run effects of diversity. I leverage my pull characteristics as “agglomer-
ation predictors", which forecast optimal locations for long-run urban growth. By interacting these

predictors with historical measures of diversity from anthropological maps, I estimate an elasticity
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of regional diversity with respect to these historical productivity shocks. I find that in a long-run
cross-section, diverse areas that experienced a historical productivity shock fared better than less di-
verse areas who experienced comparable shocks. This pattern is consistent across different historical
pull characteristics. I conclude that migrant labor diversity is a long-term boon for African cities,

and and may outweigh congestion costs over time.
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Table 12: 2SLS of Historical Diversity and Productivity Instruments

Panel A: Colonial Rail

(1) (2) 3) (4)
Light Density  Lights/Capita  Growth Lights/Capita Conflict
City 4.537 -2.447 0.294 34.455
[0.209]*** [0.254]*** [0.257] [10.677]***
Diversity 0.154 -0.713 0.116 21.367
[0.127] [0.155]*** [0.157] [6.509]***
City*Diversity -1.265 3.300 0.265 -136.214
[0.910] [1.106]** [1.121] [46.520]**
Mean Dep. -1.92 -10.90 -1.71 8.50
Observations 16,322 16,321 16,321 16,322
Cragg-Donald F-Stat 179.838 179.830 179.830 179.838
Sanderson-Windmeijer City 201.228 201.276 201.276 201.228
Sanderson-Windmeijer City*Div 186.097 186.088 186.088 186.097
Panel B: Mineral Deposit
Light Density  Lights/Capita  Growth Lights/Capita Conflict
City 7.526 -1.325 0.538 105.514
[0.271]**= [0.271]** [0.340] [13.407]**
Diversity 0.212 -1.058 -0.002 16.038
[0.148] [0.148]*** [0.186] [7.319]**
City*Diversity -2.012 3.390 0.359 -116.340
[1.008]** [1.009]*** [1.268] [49.963]*
Mean Dep. -1.78 -9.88 -1.80 8.07
Observations 22,682 22,680 22,680 22,682
Cragg-Donald F-Stat 306.111 306.087 306.087 306.111
Sanderson-Windmeijer City 318.667 318.634 318.634 318.667
Sanderson-Windmeijer City*Div 421.934 421.894 421.894 421.934
Panel C: Portage Propensity
Light Density  Lights/Capita  Growth Lights/Capita  Conflict
City -1.424 -25.776 -24.468 -11.948
[1.350] [7.386]*** [7.549]*** [90.547]
Diversity 0.539 -2.138 -0.102 1.241
[0.154]** [0.845]** [0.863] [10.345]
City*Diversity -5.528 15.076 1.820 24.295
[1.478]*** [8.097]* [8.276) [99.161]
Mean Dep. -1.97 -9.34 -1.76 6.89
Observations 32,933 32,931 32,931 32,933
Cragg-Donald F-Stat 5.441 5.451 5.451 5.441
Sanderson-Windmeijer City 5.897 5.908 5.908 5.897
Sanderson-Windmeijer City*Div 91.601 91.596 91.596 91.601

Notes: This table presents cross-sectional regressions of instrumented urban growth and the interaction of
instrumented urban growth and historical diversity on contemporary productivity outcomes. All regressions
include state fixed effects. Light density outcomes are calculated in 2013, for comparison to Montalvo and
Reynal-Querol (2021). Column 1 measures log light density, column 2 is a log measure of light density over a
Worldpop estimated population for the grid in 2010, column 3 measures the change in log lights/capita from
1992 to 2013. Column 4 measures the number of conflict events in the grid since 1997, measured in ACLED
battle events. “City" is an indicator marked as 1 if an Africapolis city is located within the grid and the
population is above 20,000. “Diversity" is a historical measure of diversity calculated as the fractionalization
of land share of different Murdock ethnic groups in the grid cell. All regressions control for distance to coast,
malaria and TseTse suitability, ruggedness, distance to a major river, agricultural land productivity and a
historical estimate of population size in 1800. * p<0.01, ** p<0.05, *** p<0.01.
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A Simulations of Shift-Share Instruments with Nonlin-
earity

In this section, I run a simulation of the instrumental variable strategy to observe how the double
instrumenting procedure performs when the true coefficients for labor size and diversity are known.
The set-up of the simulation is as follows. Suppose there are 500 regions, sourcing population from
50 homelands or origins. Each destination d receives a flow of migrants from homeland o, according
to:

Xod = a1 Zoq + a2Uq + 0Vg + YW % Vg + €0a (27)

Where Z,q is an exogenous component of origin flows that is normally distributed, but origins
vary in size and volatility Zoq ~ N(10 % 0,3 * 0). As o is assigned numerical values 1 to 50, higher
values have higher means and standard deviations. U, is an unobserved omitted variable that is
specific to a given region, Ug ~ N(10,5), and epsilon is €,q ~ N(0,1). We can think of Uz as a
bias that captures the universal "attractiveness" of particular regions for people migrating from any
homeland. In addition, I include two parameters that govern the relationship between total labor
and total diversity in region d. Vj is distributed normally V4 ~ N(0,1), and W is a weighting vector
that assigns 1 to the first homeland, and 0 to the rest, creating a skew in flows towards homeland 1.
The strenght of these forces are governed by 6 and 1 parameters. The relative strength of Z,4; and
the unobserved variable U, are governed by a1 and ao.

Given these numbers, the real labor supply and diversity for a destination city d can be calculated

as:

O
Li=» Xoa (28)

As before, diversity is calculated as the herfindahl index (HHI), which is a nonlinear function of
Xod-

O /x \?2
. od
Divy =3 () (29)
These aggregate components map into a city-level outcome Yy following:
Yy = Bilog(La) + B2log(Diva) + Bslog(Ua) + €od (30)

Each of these aggregates will introduce bias into the second stage equation via the unobserved
feature or "attractiveness" of destinations d captured by Uy and Vg. Using 2SLS I predict Lq and

Divg using just the Z,q components, which are used for instruments in a zero stage as follows:

Xod = 03 Z0d + €od (31)

Using the predicted X,q from this equation, I then instrument for the aggregates Lq and Divg
by replacing the real X,d flows with the predicted values. Figure Al shows the results comparing
OLS and SSIV beta coefficients in a model with 500 regions, 50 homelands, and a true $; of 5, and
a true P2 of -1. T also set a1 and a2 to 0.5, which sets the strength of the instrument Z4 relative to
bias Ug. The correlation between Lg and Divg is contorlled by parameters 0 = 1,¢ = 2.

Using two instruments requires that the instruments should not be linearly correlated with each
other. In practice, Ly and Divy may be correlated, as more attractive destinations also draw in a
wider array of migrant groups. To explore how the beta estimator changes as the relationship between
the instruments becomes stronger, I alter the model to create variation in the amount of correlation
between Ly and Divg. I draw 6 and ¢ from a gamma distribution such that § ~ Gamma(60, 10) and
1 ~ Gamma(200, 50). I also alter the weighting vector such that W is [1,2,5,0,0,0...]. Figure A2
shows the distribution of beta coefficients for the SSIV model of the diversity variable. The boxplots
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Figure A1: Simulation of OLS and SSIV with Ommitted Variable Bias
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Beta Coefficient

Notes: This figure shows the distribution of beta coefficients for migrant labor size L4 and migrant diversity Divg, using both
SSIV and OLS. The simulation is run 500 times, and the dotted lines show the real values for the beta coefficients, which
are 5 for labor and -1 for diversity. The OLS model regresses Yy = B1log(La) + B2log(Divg), while the SSIV uses aggregates
calculated from predicted X,4 flows. 500 destinations and 50 origins are included. The parameters used are ooy = a2 = 0.5,
0 =1, ¢ = 2. The weighting vector W is [1,0,0...].

are separated into quantiles of the absolute value of the correlation between L4 and Divg. As the
correlation between the two aggregate variables moves towards 1 the accuracy of the SSIV estimator
is reduced. Figure A3 shows the same result for the labor beta coefficient. Figre A4 plots how the
F-statistic for the diversity instrument declines as the correlation between Lg and Divg increases.
Moving the linear correlation between the instruments from 0.5 to 0.7 reduces the F-statistic by

nearly half.
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Figure A2: SSIV Diversity Beta Coefficients with Varying Instrument Correlation
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Notes: This figure shows the distribution of beta coefficients for migrant diversity Divg, using SSIV as the correlation between
the linear and nonlinear instrument varies. Box plots are grouped by quantiles of the absolute correlation coefficient between
L4 and Divg. The average of the absolute value of the correlation coefficient is shown on the x-axis. The simulation is run
500 times, and the dotted lines show the real values for the beta coefficient. The SSIV model regresses Yy = Bilog(La) +
Ba2log(Divg), where the aggregates calculated from predicted X,q flows. 500 destinations and 50 origins are included. The
parameters used are a1 = az = 0.5. The correlation between Lg and Divg is governed by 6 ~ Gamma(60,10) and ¢ ~
Gamma(200, 50). The weighting vector W is [1,2,5,0,0,0...].
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Figure A3: SSIV Labor Beta Coefficients with Varying Instrument Correlation
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Notes: This figure shows the distribution of beta coefficients for migrant labor size L4, using SSIV as the correlation between the
linear and nonlinear instrument varies. Box plots are grouped by quantiles of the absolute correlation coefficient between L4 and
Divg. The average of the absolute value of the correlation coefficient is shown on the x-axis. The simulation is run 500 times,
and the dotted lines show the real values for the beta coefficient. The SSIV model regresses Yq = B1log(Lg) + B2log(Divg),
where the aggregates calculated from predicted X,q4 flows. 500 destinations and 50 origins are included. The parameters used
are a; = az = 0.5. The correlation between Ly and Divg is governed by 6 ~ Gamma(60, 10) and ¢ ~ Gamma(200, 50). The
weighting vector W is [1,2,5,0,0,0...].
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Figure A4: F-Statistic by Varying Instrument Correlation
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Notes: This figure shows the distribution of F-statistics for the instrument of migrant diversity Divg, using SSIV as the
correlation between the linear and nonlinear instrument varies. Box plots are grouped by quantiles of the absolute correlation
coefficient between L4 and Divg. The average of the absolute value of the correlation coefficient is shown on the x-axis. The
simulation is run 500 times, and the dotted lines show the real values for the beta coefficient. The SSIV model regresses
Yaq = Bilog(La) + B2log(Divg), where the aggregates calculated from predicted X,q flows. 500 destinations and 50 origins are
included. The parameters used are a; = a2 = 0.5. The correlation between Ly and Divg is governed by 6 ~ Gamma(60, 10)
and ¢ ~ Gamma(200, 50). The weighting vector W is [1,2,5,0,0,0...].
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B Additional Tables & Figures

B.1 Supplementary Analysis

The following section presents additional tables and figures that are referenced in the text.

B.2 Birthplace-Level Tests Following Borusyak et al. (2022)

In this section, I conduct the robustness checks of the shift-share model suggested in Borusyak et al.
(2022). The authors recommend estimating an IV coefficient from a birthplace-level regression, relat-
ing exposure-weighted outcome residuals on exposure-weighted treatment residuals. The procedure
accounts for a single instrument model, so I proceed by estimating a labor-only version of the model.
The purpose of this exercise is to analyze the identifying shock-level variation, so while the coeffi-
cients do not match our headline estimates due to the exclusion of the diversity parameter, they are
informative about our shocks got.

When generating the birthplace level data, I consider the standardized change in migrant labor
size as the treatment, while the shocks are the growth rates at the birthplace level go:, and the
instrument Z is the predicted labor change according to the shift-share. I first plot our residualized
average treatment residual across destinations against the birthplace growth shocks in a binned
scatterplot. Figure Bl shows a strong first stage relationship between the growth shocks and the
average treatment residual. Next I plot the average outcome residual against the same binned
birthplace shocks. These figures, by outcome, are shown in Figure B3. Again, I see a clear positive
The benefit of these

scatterplots is that we can visualize the distribution of the treatment effect across the distribution

relationship, as higher level shocks relate to higher residualized outcomes.

of birthplace growth shocks. We see evidence of nonlinearity, with paritcularly high growth shocks
driving a disproportional amount of the variation in our treatment.

Next we calculate adjusted standard errors, as recommended in Borusyak et al. (2022), which are
standard errors in a birth-place IV regression of outcome on treatment, weighted by exposure shares.
Figure B5 plots the normal clustered robust standard errors from the IV regression, along with the
adjusted standard errors. The gray bars represent confidence intervals. As expected, the standard
errors are higher in the adjusted version, but the coefficients remain significant.

The last use of the birthplace-level dataset is to test correlations between the shocks and baseline
characteristics of destinations, weighted by exposure. Our exclusion restriction requires that there is
no significant correlated between pre-period characteristics and the birthplace shocks. To test this, we

regress a set of baseline characteristics, averaged across destinations and weighted by exposure shares,

Table B1: African Censuses with Geolocation, Birthplace or Ethnicity

Country Available Census Birthplace Ethnicity Mother Tongue
(ADM2)
Benin 1979 1992 2002 2013 1979 1992 2002 2013 1979 1992 2002 2013 | 2013
Botswana 1991 2001 2011
Burkina Faso 1985 1996 2006 1985 1996 2006 2006
Cameroon 1976 1987 2005 1976 1987 2005
Cote d’Ivoire 1988 1998 1988 1998 1988 1998
Ethiopia 1984 1994 2007 1994 2007
Guinea 1983 1996 2014 1983 1996 2014
Ghana 1984 2000 2010 2000 2010
Kenya 1969 1979 1989 1999 1969 1979 1989 1999
2009 2019 2009 2019
Malawi 1987 1998 2008 2018 2008 2018
Mali 1987 1998 2009 1987 1998 2009 1987 1998 2009
Mozambique 1997 2007 2017 1997 2007 2017 2007 2017
Rwanda 1991 2002 2012 2002 2012
Senegal 1988 2002 2013 1988 2002 2013 1988 2002 2013
Sierra Leone 2004 2015 2004 2015 2004 2015 2004 2015
South Africa 1996 2001 2011 2016 1996 2001 2011 2016
Tanzania 1988 2002 2012 1988 2002 2012
Togo 1960 1970 2010 1960 1970 2010
Uganda 1991 2002 2014 1991 2002 2014 1991 2002 2014
Zambia 1990 2000 2010 1990 2000 2010 1990 2000 2010
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Table B2: Gravity Regressions of Migrant Flow using Proxy O-D Panels

N N N
In(distance) -1.359 0.163 0.312
[0.017]***  [0.093]*  [0.070]***
In(distance?) -0.155 -0.144
[0.009]***  [0.007]***
Coethnic Share 8.634
[0.511]***
Mean Dep. Var 65.753 65.753 65.753
Observations 83,661 83,661 83,661
Destination FE Y Y Y
Origin FE Y Y Y
Year FE Y Y Y

Notes: This table shows results from a gravity regression m,q; =
exp (ugy + Yot + B1CoethShare,qy + BoDistyg + Bz Home,q) +
€odt- Where m 4, is an estimated probability defined as the frac-
tion of individuals from o that appear in destination d at time t.

M
That is, 7o = LO(it where 4, is the number of people from o
o

in d. The regression includes destination-year and origin-year fixed
effects, pdt and ~o¢ respectively. Regressions are estimated using
Poisson pseudo-likelihood (PPML). Distance is calculated as the log
kilometer distance between the centroids of origin and destination
administrative regions.

against the birthplace-level shocks. The characteristics include pre-period light density measured in
1993, as well as geographic characteristics including soil suitability, TseTse fly suitability, and malaria
suitability. The data sources for these variables are enumerated in the data section of the paper.
Figure B7 plots the beta coefficients from this regression, run separately for each outcome of interest

related to light density.

B.3 Robustness Checks

In this section we present a series of figures that show robustness for our main shift-share specification.
We perform a variety of robustness checks for our results. Figure B9 and Figure B10 show robustness
to Conley spatial standard errors across a variety of distance bandwidths. Figure B11 and B12 show
how our estimates vary when dropping individual countries from the sample. Last we simulate a
series of random outmigration shocks and apply them in our shift-share design. Figures B13 and

B14 show how the IV results appear in response to placebo shocks.

B.4 Pass-through of International Commodity Prices

Our push shock instrument leverages origin-specific shocks to predict outmigration rates. These
predicted outmigration shifts are then used as an instrument to estimate the impact of migration on
destination outcomes. We might be concerned that these push shocks are not only correlated across
space, but also affect productivity in destinations through other channels. For instance, if a price
shock hits an origin area and affects the trade of crops to a port destination, this may be realized
in light or wealth growth measures, unrelated to the price shock effects on migration. International
price shocks may also drive up the cost of food in destination areas, changing wealth and labor supply
in destination unrelated to the migration channel.

In this section, we study the impact of plausibly exogenous push shocks on local price behavior
in order to test how shocks may create differences in the relative attractiveness of urban and rural
locations. In particular we estiamte impulse response functions from local projections that show the
impact of international price changes on local urban/rural price dispersion. If international price
shocks create wedges in urban/rural prices for affected commodities, this may be evidence of direct
effects on destinations and a violation of the exclusion restriction.

Our data on local prices is gathered at the crop-month level from the Famine Early Warning
system (FEWS NET) and World Food Program (VAM) (Porteous, 2019). These datasets provide

crop-month price observations at a set of geolocated markets acrosss African countries. We code
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Table B3: Census Birthplace Shift-Share Second Stage, Migrant Flows

Panel A: OLS Results

Log(Lights) A Services Share  Housing Quality
AY 1.036 1.021 0.049
[0.113]*** [1.218] [0.039]
A div -9.999 28.617 0.553
[1.632]*** [17.441] [0.360]
Mean Dep. -2.49 5.01 -0.17
Observations 829 595 822
Panel B: Shift-Share IV
Log(Lights) A Services Share  Housing Quality
AY 2.529 1.305 0.377
[0.228]*** [1.892] [0.096]***
A div -10.425 10.640 2.612
[2.979]** [4.442]* [0.850]***
Mean Dep. -2.49 5.01 -0.17
Observations 829 595 822
Kleibergen-Paap Fstat 16.462 12.581 53.053
Sanderson-Windmeijer ¢ 245.593 161.907 183.079
Sanderson-Windmeijer div 27.686 23.125 27.438

Note: Panel A presents the OLS estimation of changes in migrant labor and diversity

on wealth and urbanization outcomes.

ya,: = allgs + yAdivg,s + vie. Panel B

presents the IV 2SLS estimation of changes in migrant labor and diversity on wealth
and urbanization outcomes. Outcomes include the levels of logged light density, change
in the labor share in services, and the level of housing quality. All regressions include
country-year fixed effects. ¥ p<0.01, ** p<0.05, *** p<0.01.

markets as urban or rural based on the local population density measured by Worldpop

. We then

create a urban-rural price gap as the difference in prices for a crop-month across urban and rural

markets in the same country. We then estimate the following local projection. For crop c in state s

at month ¢ we estimate:

Urban — Ruralcs,i+n = wlnternationales + pts + Ve + €cs,t+n

(32)

Where Urban — Ruralcs,t+n is the MoM change in the urban-rural price difference in crop c at

horizon h months from ¢. The variable International.: captures the MoM change in the international

price of crop ¢ at month ¢, and crop and state fixed effects are included. Figure B15 shows the result

of this projection over a 12 month horizon. We don’t see evidence of a systematic effect of shocks to

MoM international price changes on crop specific urban-rural price differences.
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Table B4: Census Birthplace Shift-Share Second Stage, Migrant Flows

Shift-Share IV

A Industry HHI

A Avg. Human Capital

A Industry Segregation

AY -0.038 -1.297 -1.919
[0.016]** [0.290]*** [1.682]
A div -0.524 1.817 -1.329
[0.175])*** [3.346] [6.515]
Mean Dep. -0.06 1.59 1.36
Observations 506 529 506
Kleibergen-Paap Fstat 12.380 4.334 12.380
Sanderson-Windmeijer £ 122.771 94.947 122.771
Sanderson-Windmeijer div 22.630 4.739 22.630

Note: This table presents the SSIV estimation of changes in migrant labor and diversity on skill and
industry concentration outcomes.. yq+ = aAlg: + YAdivg : + vic. Industry concentration is measured
as the change in the labor share HHI across general industry categories such as construction, mineral
production, agriculture, manufacturing and retail trade. Segregation is a measure of the deviation from

random of the distribution of migrants from particular origins to particular industries.

Human capital

changes are measured as the change in the average skill level of workers in a given destination over time,

measured in terms of schooling years.

p<0.05, ¥** p<0.01.

All regressions include country-year fixed effects.

Table B5: Self-Reported Identity by Migrant Status and Distance

Within Ethnicity

Within Destination

* p<0.01, **

Migrants Only

Nationalism  Expectations Nationalism Expectations Nationalism  Expectations

Migrant==1 0.166 0.188 0.201 0.089

[0.238] [0.131] [0.237] [0.096]
Migrant*Population -0.038 -0.016 -0.034 -0.018

[0.034] [0.016] [0.036] [0.016]
Migrant*Distance 0.011 -0.028 0.011 -0.006

[0.033] [0.020] [0.027] [0.020]
Migrant*CoethnicShare -0.054 0.051 -0.131 0.066

[0.086] [0.070] [0.087] [0.061]
In(O-D Distance km) 0.038 0.014 0.026 0.002 0.046 -0.012

[0.026] [0.016] [0.021] [0.019] [0.028] [0.018]
In(Population) 0.040 -0.008

[0.026] [0.025]
Coethnic Share 0.048 -0.074 0.104 -0.079 0.067 -0.014

[0.079] [0.089] [0.078] [0.053] [0.066] [0.052]
Mean Dep. Var 3.539 2.809 3.539 2.809 3.625 2.827
Observations 41,033 41,022 41,030 41,021 18,210 18,241
Destination FE N N Y Y Y Y
Ethnicity FE Y Y N N N N
Migrant Only N N N N Y Y

Notes: The data comes from Afrobarometer surveys, linking individuals to their origin based on reported ethnicity. The
outcomes of interest are national identity and economic expectations. National identiy, or “nationalism" is an individual’s
response to a question about how much the individual identifies with the nation relative to their ethnic group. Future
expectations is a question styled after the Michigan Consumer Confidence Survey, which asks individuals if they expect

economic conditions to improve in the next year.

All regressions include country-year fixed effects.

clustered at the Afrobarometer sampling cluster level. * p<0.01, ** p<0.05, *** p<0.01.
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Figure B1: First Stage Scatterplots in a Birthplace-Level Regression
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Notes: This figure shows binned scatterplots of birthplace-level treatment residuals against the birthplace-level shocks, organized
in 50 bins. The OLS lines of best fit is shown in red. The residualized procedure is accomplished using the method explained in

(Borusyak et al., 2022).
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Figure B3: Reduced Form Scatterplots in a Birthplace-Level Regression
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Notes: This figure shows binned scatterplots of birthplace-level treatment residuals against the birthplace-level shocks, organized
in 50 bins. The OLS lines of best fit is shown in red. The residualized procedure is accomplished using the method explained in

(Borusyak et al., 2022).

Figure B5: Standard Error Adjustments Following (Borusyak et al., 2022)
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Notes: This figure shows beta coefficients and confidence intervals for both the normal IV regression used in the main tables,
and the adjusted standard errors recommended by Borusyak and co-authors. The procedure is done separately for each light
outcome of interest. The treatment are in standardized units of the raw changes in migrant labor size.
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Figure B7: Balance at Baseline in Birthplace-Level Regressions
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Notes: This figure shows beta coefficients from regressions of average residualized destination characteristics on birthplace
shocks. The baseline destination characteristics used are pre-period light density (measured in 1993, prior to treatment for
all groups), soild suitability, TseTse fly suitability, malaria suitability. Sources for these variables can be found in the data
section on “Pull Characteristics". The shocks are enumerated in raw population counts.

Table B6: OLS Cross-Section of Historical Diversity and Urban Density

Panel A: Urban Dummy

(1) (2) 3) ()
Light Density  Lights/Capita  Growth Lights/Capita Conflict
City 1.548 -0.465 -0.383 45.330
[0.017]*** [0.047]** [0.056]*** [2.153]**
Diversity 0.043 -0.542 0.200 3.718
[0.023]* [0.065]*** [0.079]** [3.006]
City*Diversity -0.720 0.460 0.030 3.560
[0.071]*** [0.198]** [0.240] [9.159]
Mean Dep. -2.00 -9.96 -1.89 7.81
Observations 28,656 28,654 28,654 28,656

Panel B: Urban Population
Light Density  Lights/Capita  Growth Lights/Capita Conflict

2010 Population 0.136 -0.864 -0.528 3.071
[0.002]*** [0.002]*** [0.006]*** [0.265]***
Diversity -0.478 -0.478 0.119 -33.902
[0.092]*** [0.092]*** [0.250] [10.852]***
Population*Diversity 0.043 0.043 0.037 4.164
[0.010]*** [0.010]*** [0.028] [1.196]***
Mean Dep. -2.00 -9.96 -1.89 7.81
Observations 28,654 28,654 28,654 28,654

Notes: This table presents cross-sectional regressions of urban growth and the interaction of urban
growth and historical diversity on contemporary productivity outcomes. All regressions include state
fixed effects. Light density outcomes are calculated in 2013, for comparison to Montalvo and Reynal-
Querol (2021). Column 1 measures log light density, column 2 is a log measure of light density over a
Worldpop estimated population for the grid in 2010, column 3 measures the change in log lights/capita
from 1992 to 2013. Column 4 measures the number of conflict events in the grid since 1997, measured
in ACLED battle events. “City" in Panel A is an indicator marked as 1 if an Africapolis city is
located within the grid and the population is above 20,000. In Panel B, this term is replaced by
a log population estimate for 2010 from Worldpop. “Diversity" is a historical measure of diversity
calculated as the fractionalization of land share of different Murdock ethnic groups in the grid cell.
All regressions control for distance to coast, malaria and TseTse suitability, ruggedness, distance to
a major river, agricultural land productivity and a historical estimate of population size in 1800. *
p<0.01, ¥* p<0.05, *** p<0.01.
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Figure B9: Conley Spatial Standard Errors for Labor Size Coefficient A/
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Notes: This figure plots the results of IV regressions of the main estimating equation where standard errors account for spatial
autocorrelation. In particular the figure plots conley standard errors for the migrant labor size coefficient with different bounds

on the decay of spatial autocorrelation.
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Figure B10: Conley Spatial Standard Errors for Migrant Diversity Coefficient Adiv
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Notes: This figure plots the results of IV regressions of the main estimating equation where standard errors account for spatial
autocorrelation. In particular the figure plots conley standard errors for the diversity coefficient with different bounds on the decay
of spatial autocorrelation.
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Figure B11: Estimates with Individual Country Drops for Labor Size Coefficient A¢
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Notes: This figure plots the results of IV regressions of the main estimating equation where individual countries are dropped from
the sample. This figure shows results for the migrant labor size coefficient.
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Figure B12: Estimates with Individual Country Drops for Migrant Diversity Coefficient Adiv
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Notes: This figure plots the results of IV regressions of the main estimating equation where individual countries are dropped from
the sample. This figure shows results for the migrant diversity coefficient.
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Figure B13: Placebo Shocks for Labor Size Coefficient A/
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Notes: This figure plots the results of IV regressions of the main estimating equation where g, is replaced with randomly drawn
shocks. This figure shows results for the migrant labor size coefficient. The x-axis tracks individual draws of the placebo shocks.
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Figure B14: Placebo Shocks for Migrant Diversity Coeflicient Adiv
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Notes: This figure plots the results of IV regressions of the main estimating equation where g, is replaced with randomly drawn
shocks. This figure shows results for the diversity coefficient. The x-axis tracks individual draws of the placebo shocks.

Figure B15: IRF of International Prices on Local Urban/Rural Gap
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Notes: This figure shows the results of a local project estimating the effect of an international price shock on the urban-rural
price gap for the same commodity across African markets.
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