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Abstract

The impact of migration is not just a function of how many people migrate, but where they come

from. Migrants carry region-speci�c identities, traits and skills that shape outcomes in receiving

areas. In rapidly urbanizing African cities, the composition of migrants may play a negative role, as

ethnic and linguistic divisions drive con�ict and counteract classic agglomeration forces. This paper

disentangles the e�ects of migrant �ows and migrant composition on productivity in destinations. I

build a subnational panel of internal migrant �ows across Africa and develop a nonlinear shift-share

instrument that identi�es shocks to both levels and the birthplace composition of migrants. Using

exogenous variation from climate, commodity and con�ict shocks, I identify changes to the size

and composition of migrants. I �nd that cities that receive migrants from more diverse birthplaces

have lower short-run growth, but experience long-run urbanization bene�ts. The e�ects of migrant

composition are heterogeneous, with more diverse cities experiencing higher ethnic con�ict, but

also higher rates of structural transformation. The methods proposed have broad applications to

identifying nonlinear e�ects of migration, when relative group sizes matter for outcomes.

*I would like to thank my faculty advisors Sam Bazzi and Sara Lowes for their guidance and support.
�Department of Economics, UC San Diego, email: adgray@ucsd.edu.
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1 Introduction

Measuring the impact of migrant workers is usually done in levels. The size of migrant in�ows, or

the average level of their skill, changes labor demand and supply, prices and tra�c. Past work has

argued that as the �ow of migrants increases, they can raise the productivity of destinations through

agglommeration e�ects. An increase in the raw number of people in a city stimulates competition

and generates new ideas. If agglomeration e�ects exist, then the level of migrant �ows can scale-up

city populations and in turn productivity growth (Glaeser and Gottlieb, 2009). But to achieve these

e�ects, migrants have to interact with each other and with the local population. These interactions

might be smooth or di�cult, and the particular skills, backgrounds and social networks that migrants

bring with them may be more or less complementary. The complementarity of migrant workers is

a function of their composition; the relative sizes of di�erent groups at destination. In this paper I

disentangle these two e�ects, density and diversity, in the context of African rural-urban migration.

I �nd that both increasing migrant labor size and diversity produce lower per-capita city growth,

indicative of short-run congestion e�ects from ethnic con�ict. However, higher migrant diversity

also predicts increases to non-agricultural labor share, suggesting that migrant diversity plays an

important role in structural transformation.

The urban share of population in Africa rose from 31 to 54% between 1990 and 2020 (Christiaensen

et al., 2025). Across African cities about a third of the urban labor force is composed of migrants from

rural parts of the country (Christiaensen et al., 2023). In developed countries, the most productive

cities are both dense and cosmopolitan. New York or London host a diversity of industries, amenities

and services that bene�t from a wide range of workers with a healthy mix of skills. Whether

developing country cities grow under the same conditions is an open question. In the context of

Africa, there are reasons to be skeptical that cities bene�t from either density or diversity. First,

African cities su�er from high congestion costs and poor urban infrastructure. Tra�c, pollution, poor

housing and small industrial sectors may all prevent cities from taking advantage of increased density

(Castells-Quintana, 2017). Second, African countries are saddled with ethnic and religious con�ict.

A literature in political economy documents correlations between measures of ethnic and linguistic

diversity, low GDP growth and high incidence of violent con�ict (Arbatli et al., 2020; Alesina et al.,

2003; Robinson, 2020). While the mechanisms are not well understood, microeconomic evidence has

shown that ethnic divisions can directly lower the productivity of �rms (Hjort, 2014).

This paper o�ers a framework to synthesize the literatures on agglomeration and ethnic con�ict.

Density and diversity are jointly determined by the size of the labor force, and the mix of worker

types. As migrant �ows increase or decrease, they increase or decrease the level of density in a city.

If migrants are all from the same origin, then they lower the relative diversity of the workforce.

If migrants come from many di�erent origins, the relative diversity of the migrant pool increases.

Capturing the e�ects of migrants on urban Africa requires an empirical strategy that can disentangle

the e�ects of migrant levels and composition. To identify these parameters separately, I construct a

shift-share instrument that predicts linear changes in migrant �ows, and nonlinear changes in migrant

diversity. Then, I consider the role of pull and push shocks in driving changes in migrant levels and

composition. I estimate the impact of climate, commodity prices and con�ict on the size and spatial

pattern of migrant �ows in Africa.

The paper begins by creating a proxied origin-destination panel of African migrant �ows. To

overcome data gaps in the measurement of African migration, I use the universe of publically available

African censuses and leverage a mix of worker birthplace and language data to identify worker origins.

While past work on African migration has relied on cross-sectional data or small household panels,

this origin-destination panel captures aggregate changes in population size and composition by origin

between censuses.

Destinations are exposed to migrants from di�erent birthplaces according to a pre-period set-

tlement share of workers from a given origin o living in destination d. Each origin birthplace has

a country-wide outmigration �shift", measured as the total number of people from that birthplace
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observed living outside of that homeland across census periods. The combination of the aggregate

shifts with the destination-speci�c shares is an instrument for migrant labor size, or the �levels"

of migration. To capture the e�ects of composition, I add a second shift-share instrument. This

�composition" instrument captures how changes in the distribution of the outmigration shifts pre-

dictably alter a Her�ndahl Index (HHI) of migrant shares. The result is a linear and nonlinear

shift-share instrument to predict changes in both migrant levels and birthplace composition, as mea-

sured by an HHI of birthplace shares. The instruments capture predicted changes in migrant levels

and composition that are plausibly exogenous to contemporaneous labor demand shocks.

To address concerns about destination productivity changes being engodenous to birthplace-level

outmigration shifts, I build on the shift-share strategy by replacing the outmigration shifts with

predicted outmigration rates. Following work on historical immigration to the US by Boustan et al.

(2010), I predict outmigration from each origin using a set of plausibly exogenous shocks related to

climate, con�ict and international prices. In a zero stage I show that drought reduces outmigration,

while con�ict and high commodity prices boost outmigration rates. Leveraging these variables to

predict our shifts, I re-estimate the 2SLS model for levels and composition.

While migrant settlement shares are often treated as an endogenous component in Bartik-style

migration instruments, serial correlation between pre-period settlement shares and contemporary

labor demand may bias results. In a last exercise I attempt to isolate exogenous variation in shares

that comes from a zero stage regression of origin-destination distances and historical destination

characteristics. These �pull characteristics" predict a destination's overall attractiveness to migrants

based on historical productivity shocks that are plausibly unrelated to contemporary demand. �Pull

characteristics" can be thought of as historical instruments for agglomeration. Examples include

distance to colonial railroads, historical mineral deposits, and portage sites.

The outcomes of interest measure di�erent aspects of a destination's urban growth. I use di�erent

functions of changes in satellite night-light luminosity as proxies for changes in city size and GDP

per capita. I also use census measured non-agricultural labor share as a proxy for urbanization, and

a principle component of housing characteristics as a measure of local average household wealth.

The results show that in-migration to a destination increases city light density, but not per-capita

growth rates. Higher migrant levels scale up city sizes, but don't yield higher productivity growth.

A higher diversity of migrants coming from a wider set of origins decreases both light density and

per-capita growth. Moving from a perfectly homogeneous to a perfectly heterogeneous migrant labor

force reduce light density growth by 10%, conditional on migrant labor size. These e�ects are large.

Relative to other developing countries, the negative e�ect of migrant labor size on light density

growth is 4 times larger in an African context, and the congestion e�ects of diversity are twice as

large. These results suggest that congestion forces created by migrants may constrain the potential

bene�ts of increasing density.

When examining non-light based measures of productivity the picture becomes more complicated.

More diverse migrant pools increase the non-agricultural labor share, an indicator of urbanization

and structural transformation. Again the size of the e�ects are economically meaningful. Increasing

migrant diversity creates a more than 1 for 1 increase in non-agricultural labor share, conditional on

migrant labor size. Migrant labor size by itself has a modest and negative e�ect on non-agricultural

labor share. I �nd that the result is driven mainly by an increasing share of services. This hetero-

geneity points to the importance of separately identifying size and composition e�ects of migration.

I interpret these results as evidence that migrant diversity may have negative short-run e�ects on

city growth, but may yield long-run bene�ts in the form of industry mix and structural transfor-

mation. As a further exploration of heterogeneity, I consider evidence from the end of Apartheid in

South Africa, which created a sudden drop in migration costs for black South Africans. Leveraging

the abolition of Pass Laws as a natural experiment, I study the impact of the end of Apartheid on

changes to migrant labor size and diversity. I �nd that while the size of the native black migrant

labor force still produces negative e�ects on urban productivity growth consistent with the baseline

results, there are no congestion e�ects from black migrant diversity. This result shows that particular
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country experiences and history may alter the implications of migrant diversity for urban growth.

I consider several mechanisms to explain my results, including ethnic con�ict, linguistic diversity,

�rm size and skill composition. I �nd evidence consistent with the congestion e�ects of ethnic con�ict

described in the cross-sectional political economy literature. Both increasing migrant labor size and

diversity predict higher rates of con�ict in receiving cities. Unlike past experimental work, I don't

�nd evidence that increasing worker diversity lowers wages or output per worker in a panel of �rms,

or that migrant diversity a�ects the average skill level at destination. In a �nal section of the paper,

I explore the possible long-run bene�ts of migrant diversity suggested by the positive impact on non-

agricultural labor share. I leverage my constructed historical agglomeration pull factors in a long-run

version of the empirical strategy to explore the cross-sectional relationship of diversity, population

and productivity across African cities. I �nd that cities that happened to be located in more diverse

areas due to exogenous factors bene�tted more from historical productivity shocks in the long-run.

I conclude that migrant diversity brings short-term costs, but may play a bene�cial role in long-run

structural change.

This paper makes a contribution to the identi�cation of linear and nonlinear e�ects of migration.

The literature on developed country migration regularly quanti�es the e�ects of migrant �ows on

growth, often parsing results by skill level. Recently, researchers have begun to consider the impor-

tance of broader categories of worker type in explaining the heterogeneous e�ects of immigration on

destinations. Alesina et al. (2016) directly studies the role of birth country diversity on destination

outcomes using a gravity model to predict both the share and diversity of immigrants. They �nd that

immigrant diversity is positively associated with measures of TFP and patent intensity. However,

their estimation strategy does not consider the simulteneous role of migrant labor size, and risks

con�ating the e�ect of birthplace diversity with migrant labor size. A more recent literature has

sought to microfound the role of particular ethnic or national groups in productivity growth through

knowledge spillovers or home-country connections (Boberg-Fazli¢ and Sharp, 2024; Choi et al., 2024;

Burchardi et al., 2019; Imbert et al., 2022). Another strand of work has studied the impact of

ethnic enclaves and di�erent assimilation rates on the migrant labor market (Albert et al., 2021).

Assimilation rates, ethnic enclaves and knowledge-spillovers are all a function of the composition of

migrants. My paper develops a framework to aggregate these ideas into a shift-share design that can

disentangle the e�ects of pure increases in labor size from compositional changes in migrant worker

types.

In developing contexts, a few papers have considered the direct e�ect of birthplace-speci�c human

capital on destination productivity (Bazzi et al., 2016). Most work on ethnicity and migration in

development has been interested in estimating linguistic or cultural distance as a migration cost,

rather than evaluating the aggregate e�ects on destinations (Wang, 2024). In political economy,

studies of African diversity have been mostly correlational or leveraging long-run instruments (Alesina

and Ferrara, 2005; Alesina et al., 2003; Arbatli et al., 2020; Ashraf and Galor, 2013). This work has

generally found that more linguistically or culturally diverse countries see higher con�ict, lower public

goods and lower GDP growth. At subnational levels, Montalvo and Reynal-Querol (2021) �nd this

correlation �ips direction, hinting at the idea that agglomeration bene�ts and diversity play joint

roles in city-level outcomes. This correlational work has su�ered from two key empirical concerns: (1)

historical measures of local diversity are correlated with local productivity factors and geography. The

distribution of ethnic groups across space is related to many unobservable productivity fundamentals

(Michalopoulos, 2012). (2) Diversity is intimately related to population size � historically diverse

places tend to also have relatively more people. Montalvo and Reynal-Querol (2021) note that many

historical trade centers, now larger cities, were founded at the intersection of ethnic boundaries. My

approach addresses these concerns �rst by estimating a di�erenced equation that leverages changes in

population and diversity within destinations over time. Second, I design two shift-share instruments

to separately identify the e�ects of migrant labor size and birthplace diversity.

This paper also speaks directly to the literature on the returns to migration. While this literature

is large, work on Africa in particular is relatively sparse due to data gaps. Few surveys capture
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internal migrant �ows, or even area of previous residence. Most results in African settings have

relied on household panels that track individuals over several waves, or cross-sectional data with

simple markers of migrant status. Young (2013) and Gollin et al. (2021) use Demographic Health

Surveys (DHS) to quantify large di�erences in consumption and amenities between rural and urban

areas. Hamory et al. (2021) and Lagakos et al. (2020) use individual �xed e�ects in household panels

to compare migrant returns before and after migrating from rural to urban areas, and �nd relatively

lower estimates of urban premia. Related work looks for evidence of agglomeration forces, showing

increasing returns to density across African cities (Henderson et al., 2021; Castells-Quintana, 2017).

Across these papers migrants are identi�ed in coarse categories as coming from a �city", �town"

or �rural area". The data is either not large enough or not detailed enough to consider origin-

destination pairs, making it hard to estimate migration costs. Relatedly, while these papers consider

heterogeneous migration costs across origins, which may include linguistic di�erences, there's no

conception of complementarities between migrants of di�erent origins. This paper contributes in two

ways. First, I use a combination of birthplace data and ethnic linking methods to tie workers at

destination to speci�c regional origins. This novel proxied origin-destination panel is able to answer

more speci�c questions about the role of particular origins on migration returns. I show that my

proxied origin-destination migration panel can replicate key patterns in standard migration gravity

models and estimates of migration returns. Second I bring shift-share methods to an African setting,

allowing me to calculate a density premium by leveraging exogenous shifts in migration levels, rather

than indvidual returns.

Finally, I contribute to a separate literature that considers the role of shocks on migration. My

paper uses climate, commodity price and con�ict shocks as plausibly exogenous intstruments for shifts

in outmigration. Kamuikeni and Naito (2024) and Henderson et al. (2017) �nd drier conditions in

African countries increase the rate of internal migration and urbanization respectively. Henderson

et al. hypothesize that cities that specialize in non-agricultural production provide a safe-haven

for rural migrants. McGuirk and Nunn (2024) links drying conditions with increased con�ict in

Africa between pastoralists and farmers. Few papers study the e�ects of price shocks on migration

levels or composition in African countries (Brückner, 2012). Gollin et al. (2016) consider the role of

commodity exports on urbanization, �nding that higher value exports also drive urbanization at the

country level. My work most relates to a separate thread in the political economy of con�ict that

identi�es the association of granular price shocks of agriculture and minerals with con�ict (Bazzi

and Blattman, 2014; McGuirk and Burke, 2020). This paper is a more granular study of push shock

dynamics, using origin-destination decisions and subnational exposure to shocks as a �rst-stage to

predict migrant �ows.

This paper brings a novel perspective to the impact of shocks on migration. Suppose that where

migrants come from is an important variable in the production function of a destination. If both

levels and composition of migrants matter, then the level and composition of shocks matters as well.

An intense climate or price shock that a�ects a singular region of a country may drive many migrants

that are relatively homogeneous in terms of language or skill. A shock that is broader, a�ecting many

locations at di�erent intensities will create a more diverse �ow of outward migrants. I show that

di�erent push-shocks contribute di�erently to migrant �ows, a�ecting both levels and composition

simultaneously.

A key innovation of this paper is the use of nonlinear functions of shift-share instruments to

capture nonlinear e�ects of migration. The methods used to disentangle size and composition of

migrant �ows can be applied to a number of other contexts where the impact of �ows have linear

and nonlinear components, such as in the study of skill-complementarity, assimilation, segregation or

industry concentration (Lewis, 2011). Immigration shocks do not only cause changes in population

levels or average skill level. The relative sizes of immigrant populations can a�ect the rate at which

group assimilate, the formation of enclaves, rates of crime and con�ict and the organization of �rms.
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2 Data

An ideal dataset to study the aggregate impacts of migration would capture changes in migrant

�ows by destination and origin over time. Few African data sources contain granular migration �ows

within or across countries. To measure changes in migrant composition, I construct a proxy for

origin-destination panel data by linking people at a destination to their origin birthplace or ethnic

homeland. The main analysis uses the subset of available African censuses that include subnational

information on household location and either birthplace, ethnicity or mother tongue. The spatial

granularity is at the second administrative level, which corresponds to counties or districts. While

the main tables use censuses to capture changes in �ows over time, I supplement this evidence in

di�erent parts of the paper with geolocated Demographic Health Surveys (DHS) and Afrobarometer

Surveys. These cross-sectional household surveys collect data on fewer households but contain more

variables and years. Both DHS and Afrobarometer contain information on workers' ethnicity, mother

tongue or tribe. Using the ethnic linking methods described below, I can identify the spatial origins

of individuals in DHS and Afrobarometer, allowing me to construct a panel at the sample cluster to

ethnic homeland pair level.

In the section below, I discuss the construction of the origin-destination panel data. Next I discuss

the data inputs used in producing exogeneity in the outmigration shifts and settlement shares. �Push

shocks" are used to predict changes in outmigration rates for di�erent origins. The variables used for

outmigration shocks include drought events, agricultural and mineral price shocks, and geolocated

con�ict events. �Pull characteristics" are used to predict settlement shares. These are characteristics

that are correlated with early settlement in a destination, but are unrelated to contemporary labor

demand shocks. I use colonial rail locations, mineral deposits, and river characteristics to predict

which destinations attracted migrants historically.

Next I discuss the productivity outcomes used to evaluate changes at migrant destinations. I use

a variety of functions of night light density that have been used in past work on urban productivity

in developing countries (Chiovelli et al., 2023). I also leverage census data that captures measures

of industry-speci�c labor shares, and individual's housing characteristics as a wealth proxy. The last

part of this section explores observational returns to migration using the proxy origin-destination

dataset, and �nds patterns that are consistent with more standard origin-destination panels of mi-

gration. A concern with using ethnic or language data to infer migrant origins is that changes over

time may capture changes in fertility at destination, rather than real migration �ows from the ori-

gin to destination. The observational returns serve as a sanity test that provides evidence that my

approach is capturing migration changes rather than relative growth rates.

2.1 Proxied Origin-Destination Panels

2.1.1 Census data

When available, African censuses are taken from IPUMS. In a few cases I supplement with census

data from the World Bank microdata portal or government statistical websites. Cesuses are typically

spaced about 10 years apart. The majority of the censuses are 10% random samples. The census

years cover the period between 1970 and 2020. The main analysis will focus on the period 1990 -

2020, which is the window of time in which satellite data of nighttime light density is available.

A subset of censuses record a worker's birthplace at the second administrative level. I link each

individual at a given destination and year to their birthplace, which I call their �origin". Because

subnational birthplace is reported for migrants moving within country, this paper focuses on the

e�ects of internal migrants. Aggregating the data to the origin-destination-year level, I can observe

decade level shifts in the number of people from a given birthplace, at a given destination. This panel

is unbalanced, as each country completed censuses in di�erent years. For a given country, the unit of

analysis is changes in migrant labor and composition across census years for a given destination-year.

I supplement the birthplace data using an ethnic linking strategy. In some censuses workers
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report their ethnicity or native language, but not their birthplace. Because ethnic groups were

historically organized into regional territories, I can use this information to connect them to their

ethnic homeland of origin. I use the Linking Ethnographic Database (LEDA) by Müller-Crepon

et al. (2022) to map each reported ethnicity to an ethnic homeland region on the Murdock Map,

a common ethnographic resource used in African political economy. This linking procedure allows

me to match a worker to a spatial origin or �homeland". Figure 17 shows an example of the groups

plotted in the Murdock map, most of which resemble counties in size. I can run the same analysis

using these ethnic homelands as our �origins", while destinations are still reported at the second

administrative level. See Table B1 for a list of the censuses used in the analysis, including both

samples with birthplace or ethnicity-linked origin data.

2.1.2 DHS and Afrobarometer Panel data

The shift-share results are based on the constructed panel of censuses. To supplement some analyses,

I use standard geolocated household surveys. The Demographic Health Surveys (DHS) and Afro-

barometer are household surveys with detailed information on assets, housing quality, identity and

the geolocation of households (BenYishay et al., 2017; Boyle et al., 2024). Afrobarometer includes

various questions about ethnic and economic attitudes. These variables are useful in understanding

city-level and individual-level outcomes over shorter time horizons. What the surveys lack is detailed

information on migration behavior 1. Since most of the surveys ask about ethnicity or home lan-

guage, I can use the same LEDA linking procedure as described above for censuses. Leveraging the

ethnic information in DHS and Afrobarometer as an indicator of migrant origin allows me to study

migration with a detailed origin subnational unit.

2.2 Push Shocks to Outmigration

In an exercise to isolate exogeneity of shifts in our shift-share design, I consider a variety of shocks

that may push migrants from origins. Past empirical work on migration has used instruments for

income shocks that a�ect an origin region's outmigration rate but are unrelated to productivity

changes at destination. I explore several potential candidates for push shocks at origin based on

past work. These include climate shocks, international commodity prices and con�ict events. While

all these subnational shocks have been used in other contexts, my paper is among the �rst to study

these shocks in the context of an origin-destination migration panel for Africa.

2.2.1 Climate

A number of recent papers have studied climate change e�ects on migration in developing countries

(Desmet and Rossi-Hansberg, 2024; McGuirk and Nunn, 2024; Kamuikeni and Naito, 2024). The

hypothesis guiding this work is that drier conditions create negative income shocks in agricultural

areas, which then a�ects migration decisions. For instance, a major drought in East Africa in 2011

forced a reported 920,000 people from Somalia to �ee to neighboring countries, many of whom settled

in cities like Nairobi. The main climatic variable of interest is a measure of drought conditions. I

use data from the Standardised Precipitation-Evapotranspiration Index (SPEI), which measures

drought intensity monthly by combining temperature and precipitation data (Vicente-Serrano et al.,

2010). The data provides monthly estimates of drought intensity at a 0.5x0.5 degree cell resolution

from 1900-2022, which I aggregate into yearly estimates. For each subnational unit, I calculate the

average drought experience over time. A month-cell is under normal conditions when the SPEI

index is around 0, which means there is balance between the precipitation rate and the potential

evapotranspiration. I code the month as �in drought" if the index is a standard deviation lower

than zero. This is the threshold for extreme dryness suggested by the index (Vicente-Serrano et al.,

1A subset of DHS surveys ask individuals about their region of previous residence. Typically these regions are listed at
the �rst administrative level such as provinces, or may be as broad as identifying North vs. North-West of the country.
Ethnic homelands are a more granular and consistent spatial unit.
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2010). For each region, I calculate a yearly drought index from monthly dummy variables that signal

whether the month was a drought based on the SPEI (ie. the share of year in drought). As secondary

climate variables, I also consider rainfall and temperature separately.

2.2.2 Agricultural and Mineral Commodities

Many rural areas in Africa produce commodities for export, including cash crops like maize and

minerals like gold or diamonds. As international prices �uctuate, producers in di�erent regions are

di�erentially exposed to these potential income shocks. Migration may then respond positively or

negatively to exogenous changes in international commodity prices, weighted by local commodity-

speci�c exposure. To construct a subnational measure of price exposure for key commodities, I use

data on both the share of production in commodities and international prices. I construct a yearly

time series of the global market prices of key commodities spanning the years 1960-2024. I start from

a price list assembled by (Bazzi and Blattman, 2014) which tracks major agricultural and mineral

commodity prices from 1960-2009. I then manually extend this list using available data from the

IMF Primary Commodities price system, and the World Bank Pink Sheet (Group, 2025; IMF, 2025).

For mineral prices, I mainly rely on the US Geological Survey's (USGS) �Historical Statistics for

Mineral and Material Commodities", which covers US prices of major minerals back to 1900 (Kelly

et al., 2010).

I create a measure of subnational exposure to various agricultural commodities using FAO Global

Agro-Ecological Zones (GAEZ) production maps, which estimate the cell-level average hectares dedi-

cated to a set of major commodity crops across the continent (Berman and Couttenier, 2015). These

production areas are estimated in the year 2000, and are used as baseline exposure. Product prices

are normalized to 100 in 2000 and summed with weights by the hectare area. Exposure is weighted

by the share of productive hectares dedicated to that crop. For each crop product p grown in region

o:

AgriculturalPriceExposureot =
∑
p

Pricet ∗HectareShareop (1)

To account for price shocks over longer time horizons, I construct di�erent measures of lagged

price exposure. A 10 year lagged exposure is an average of price exposure between censuses:

PriceShockot =
1

10

t∑
t−10

PriceExposureot (2)

For mineral commodities, I weight exposure to given minerals using the �USGS Compilation

of Geospatial Data (GIS) for the Mineral Industries and Related Infrastructure of Africa" (Kelly

et al., 2010). This dataset contains geolocated mineral facilities and their estimated capacity. For

each mineral, I measure the total capacity across countries. Then each mineral producing region is

exposed to a given mineral price according to its relative share of total production capacity in that

mineral. The total mineral price exposure for a region is then:

MineralPriceExposureot =
∑
m

Pricet ∗RelativeCapacityom (3)

Where relative capacity in mineral m for region o is given by:

RelativeCapacityom =
Capacityom
Capacitym

(4)
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Figure 1: Data Examples from Mozambique 1997-2007

(a) Change in Migrant In-Flow to Maputo (b) Change in Agricultural Price Exposure

(c) Drought Exposure (SPEI) (d) Con�ict Exposure

Notes: This �gure shows examples of the data from one census pair, speci�cally Mozambique 1997 and 2007. Panel A shows the
change in migrant �ows to Maputo city from each birthplace between 1997 and 2007. Panel B shows the change in the weighted
agricultural price exposure between 1997 and 2007. Panel B shows the average drougth intensity by region between 1997 and 2007.
Panel D shows the average annual con�ict events in each region over this time period. Data for the change in migrant in-�ows
comes from the publically avaialble African censuses on IPUMS International. Data for agricultural price exposure is taken from
IMF Primary Commodities and the World Bank Pink Sheets, combined with FAO production exposure. Data for drought exposure
is calculated from an SPEI index (Vicente-Serrano et al., 2010), and Con�ict Exposure data is from ACLED.

2.2.3 Con�ict

The Armed Con�ict Location & Event Data (ACLED) provides geolocated con�ict events across

Africa2 The ACLED data covers events between 1997 and 2025. The data is based on the manual

coding of news articles, and provides basic information on each event including approximate dates,

estimated death toll, and the types of actors involved. For each region, I aggregate all con�ict events

that appear in that region to produce an annual count of con�ict events. Con�ict intensity in a

given year is the average number of con�ict events per month that year. As a secondary outcome, I

produce an index of average con�ict faitalities in a given region-year.

2.3 Pull Characteristics to Predict Immigration

Traditional migration shift-share instruments rely on endogenous settlement shares of di�erent im-

migrant groups from past years. If settlement shares are serially correlated over time, its possible

that the settlement shares are endogenously related to contemporary labor demand shocks. For

robustness, I'll also consider a group-speci�c settlement share that is instrumented by a collection

of destination and origin-destination characteristics. In particular I instrument for past settlement

using the interaction of the distance between origin-destination pairs and a set of �pull character-

istics". These pull characteristics are designed to predict the attractiveness of destinations but are

plausibly uncorrelated with current period demand shocks. I consider several historical shocks that

predict urban formation, including the presence of mineral deposits, colonial railroads and portage

sites. Data for mineral deposits is taken from the �USGS Compilation of Geospatial Data (GIS) for

the Mineral Industries and Related Infrastructure of Africa". Data on colonial railroad projects is

taken from the universe of colonial rail projects collected by Jedwab and Moradi (2016). Last, I

2Di�erent events have di�erent degrees of con�dence in the precise geolocation. I only include events where the re-
searchers have marked having con�dence in the geolocation at the second administrative level.
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construct an instrument for portage leveraging data on river �ow from the HydroSHEDS database

(Lehner and Grill, 2013). The details of these instrument constructions are described in the empirical

strategy.

Last, I leverage a set of common geographical characteristics as controls in cross-sectional re-

gressions. These include the ruggedness index from Nunn and Puga (2012), malaria suitability from

Kiszewski et al. (2004), Tse Tse suitability from Alsan (2015) and soil suitability from Ramankutty

et al. (2002).

2.4 Destination Productivity Outcomes

I use a variety of subnational proxies for regional productivity. I consider two functions of changes

in light density as measures of urban extent and GDP per-capita growth. I also leverage census-level

measures that capture structural transformation and urbanization characteristics including non-

agricultural and services labor shares. Most censuses also include data on information on housing

quality, such as the material of the roof and �oor of the surveyed household. I construct a principle

component measure of these material characteristics as a proxy for household wealth. All outcomes

are measured in terms of di�erences between census years.

2.4.1 Light Density

Nighttime light density is a commonly used proxy for economic development, especially at subna-

tional levels. A variety of papers have shown correlations between measures of luminosity and other

measures of wealth from either surveys of household income or administrative level human capi-

tal and non-agricultural labor share (Michalopoulos and Papaioannou, 2013; Chiovelli et al., 2023).

There are three issues that must be dealt with to use luminosity as a proxy for wages or productiv-

ity. First, the light density data produced before 2013 and after 2013 are at di�erent resolutions,

which complicates comparisons over time 3. I use a harmonized dataset produced by Li et al. (2020)

that performs an inter-calibration to combine the datasets and generates a DN-style output at 30

arc-seconds which ranges from 0 to 63.

The second issue is dealing with blooming, where high light density in a given cell may bleed into

neighboring cells producing unwanted spillovers, say from a large city to a small neighboring town.

The harmonized dataset partially adjusts for this, and administrative regions are large enough to

somewhat mitigate this concern. Additionally, in the robustness analysis I use spatially correlated

standard errors to address contamination across regions.

The third issue is how to construct an appropriate measure of economic growth from the pixel-

level light data. Di�erent papers use di�erent constructions. Chiovelli et al. (2023) aggregate pixels

by summing over their regions of interest, and then including controls in their regression for log

population and region area. Montalvo and Reynal-Querol (2021) use changes in log light density

divided by a gridded population estimate as a measure of local economic growth. I consider two light

density constructions in di�erences to capture the size and growth of destinations. The �rst is the

standardized level change in average light density in a given administrative region. This measure

captures a change in light density levels, and can be thought of as a proxy for city size growth or

extent. The second measure is the change in the log of light density over population. This measure

captures the proportional change in light density per capita, and is used as a proxy of GDP per

capita. As cities approach the maximum value of measured light density at the pixel level, there may

be frontier e�ects. Large productive cities may show low light density growth because there is no

further improvement to be made. I try to mitigate these concerns by controlling for pre-period light

3Before 2013, satellite imaging comes from the Defense Meteorological Satellite Program (DMSP)/Operational Linescan
System (OLS), which provides digital number (DN) values at a resolution of 30 arc-seconds. After 2013, the Visible Infrared
Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership satellite provides light density data
at 15 arc-seconds, and at a higher radiometric resolution. This means it can detect smaller di�erences in light density
relative to the past technology.
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density in the di�erenced regressions. I also consider separate measures of productivity from asset

data and industry shares.

∆Log(Lights/Capita)t = Log(Lights/Capita)t − Log(Lights/Capita)t−1 (5)

2.4.2 Assets and House Quality

I follow the spirit of Young (2013) using the ownership of durables and housing conditions as proxies

for household wealth. DHS surveys include a rich set of variables that describe ownership of di�erent

durable assets like a TV, bicycle, car or microwave. I use these dummy indicators for assets to

construct a wealth score as a �rst principal component of these assets. This procedure is similar

to the DHS's own measured wealth score, which leverages a �rst principal aggregation of asset

categories. I only include the subset of assets available in all surveys, to ensure comparability

across survey samples. In the census data, assets are more sparse. However, most censuses include

information on the house, wall and roof materials. Leveraging this fact, I replicate the procedure for

DHS estimations of wealth by taking a �rst principal component of a set of house quality measures

for each census where it's available. Averaging these estimates across individuals in a district gives

us a subnational measure of housing quality. Table 1 shows that these principal component measures

are positively correlated with education and age, suggesting that the method accurately captures

relative wealth.

2.4.3 Industry and Urbanization

As Gollin et al. (2016) highlights, growth in cities can take place in both tradable and non-tradable

sectors. A common refrain about African cities is that they seem to grow without an expansion in

the manufacturing sector; so-called �consumption cities" (Jedwab et al., 2025). I use two measures of

urbanization growth as outcomes: the total non-agricultural labor share and the non-tradable services

labor share. Each outcome is derived from individual census data which reports general industry

classi�cations such as agriculture, mining, wholesale trade, manufacturing, �nancial services, etc.

These industries are aggregated into measures designed to re�ect growing urbanization � as cities

grow, we expect them to increase their non-agricultural share. For cities experiencing service-led

growth rather than manufacturing growth, we expect �services share" to increase.

These outcomes are considered in terms of di�erences across census years. This is particularly

important in an African data context because informal work is often underreported in census occu-

pational data, even though it makes up a sigini�cant fraction of the labor. The industry measures

used capture changes in the industry shares among the subset of individuals who report formal em-

ployment. The bene�t of our di�erenced equation design is that baseline di�erence in formalization

rates are di�erenced out.

2.5 Validating a Proxy Origin-Destination Panel

Using origin-destination panel data from ethnicity and birthplace di�ers in signi�cant ways from

typical origin-destination panels. The data does not capture �ows of migrants over time, but rather

the stock of individuals from particular birthplaces or homelands for a set of unbalanced years.

Observing an increase in people from a given birthplace o in a destination d may re�ect increased

migrant �ow into the destination, or decreased return migration to o. Observing an increase in

people from a given ethnicity may also re�ect di�erential changes in the population growth of that

ethnicity, rather than changes in migration from an ethnic homeland.

As a �rst exercise I estimate observational returns to migration, and compare the results to

other cross-sectional estimates as a validation exercise. I use DHS panel data, where individuals

are linked to ethnic homelands. I use DHS panel for this exercise because of the detailed catalogue

of individual assets, which can be used to construct a proxy for migrant wealth as an outcome.

11



Individuals are identi�ed as �migrants" if they are residing in an administrative region outside of their

ethnic homeland. Leveraging the DHS's survey of individual assets, I construct a �durable assets"

and �house quality" score. The procedure for doing this follows closely the DHS's own method for

estimating wealth, transforming each asset category into a dummy variable and calculating a �rst

principal component measure. The outcome �Durables" is the �rst principal component of several

binary variables for di�erent assets, including electricity, phone, car, fridge, television and bicycle.

The outcome �House Quality" is the �rst principal component of reported wall, roof and �oor material

of the house. Using the constructed principal component measures of durable assets and housing

quality, I compare consumption between migrants to non-migrants as:

Wealthit = β1Migranti + β2Migranti ·Distanceod

+ β3Migranti · CoethnicShareod + Zi +Xod +Wd + υst + γo + ϵit (6)

Where Wealthit is the wealth score for individual i in survey year t. Distod is the log distance

between the ethnic homeland and the destination, Migranti is a dummy for migrant status, and

CoethShareod re�ects the fraction of individuals in d that are from ethnic homeland o. I include

�xed e�ects for country-year υst, and γo to isolate variation within an ethnic group. The controls for

the individual Zi include age and schooling, while Xod includes the level of o-d distance and coethnic

share, and Wd includes destination log population. Wealth is a measure of either durable assets or

housing quality. Subsequently, I compare outcomes of migrants to natives within a destination by

replacing the ethnicity �xed e�ect with a destination �xed e�ect. Finally, I isolate the sample to only

migrants, and compare the outcomes of migrants within a destination from di�erent homelands.

Table 1 shows the results for di�erent variations of equation 6 with di�erent �xed e�ects. While

the average consumption bene�t to migrants is weakly positive in terms of assets, columns 1-3

suggest that migrants that travel further have higher returns. This is consistent with a model of

migration with heterogeneous costs in which the migrants that choose to pay high migration costs

are wealthier ex-ante, or have a higher productivity draw for a particular location (Lagakos et al.,

2020). Coethnic share is consistently negative across speci�cations, suggesting that migrants gain

better returns in more diverse destinations. This is consistent with the �ndings of Wang (2024),

which �nds that migrants that move to more culturally distant destinations have higher returns in

an Indonesian sample. As large productive cities are more diverse, this �nding is consistent with

the idea that migrants move to productive, cosmopolitan destinations. I also �nd that returns to

migration are decreasing in destination population size, conditional on travel distance and coethnic

share. Henderson et al. (2021) �nd similar negative e�ects of population scale on household incomes

in their cross-sectional African data, consistent with a story about the negative e�ects of sprawl and

slum formation on migrant returns. The modest to negative average e�ects of migrant status on

wealth o�ers a preview of the paper's baseline results, where I �nd no per-capita growth premium

from increased migrant labor size.

As an additional check, I also run a standard gravity model relating the share of migrants from

origin o in d using a Poisson pseudo-likelihood (PPML) model. Table B2 shows the relation of the

share of migrants arriving in d to their travel distance and coethnic share. Consistent with past

work on migration, I �nd that migration between origin-destination pairs in my panel is decreasing

in distance and coethnic share, as individuals sort towards areas that are close by and majority

coethnic. This �nding is consistent with standard models of migration with linear migration costs

in distance.

3 Empirical Strategy

The goal of the paper is to estimate the e�ects of changes in migration levels and composition on

destination outcomes. Both the size of the migrant labor force and the diversity of migrants are likely
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Table 1: Observational Returns by Migrant Status and Distance

(1) (2) (3) (4) (5) (6)
Within Ethnicity Within Destination Migrants Only

Durables House Quality Durables House Quality Durables House Quality

Migrant==1 0.152 -0.121 0.059 0.125
[0.079]∗ [0.083] [0.080] [0.082]

Migrant*Population -0.050 -0.032 -0.015 0.000
[0.008]∗∗∗ [0.008]∗∗∗ [0.008]∗ [0.008]

Migrant*Distance 0.064 0.098 0.024 -0.009
[0.011]∗∗∗ [0.012]∗∗∗ [0.012]∗∗ [0.013]

Migrant*CoethnicShare -0.251 -0.208 -0.221 -0.270
[0.033]∗∗∗ [0.035]∗∗∗ [0.038]∗∗∗ [0.042]∗∗∗

ln(O-D Distance km) 0.024 -0.026 0.030 0.027 0.064 0.028
[0.008]∗∗∗ [0.008]∗∗∗ [0.010]∗∗∗ [0.011]∗∗ [0.008]∗∗∗ [0.009]∗∗∗

ln(Population) 0.227 0.203
[0.008]∗∗∗ [0.008]∗∗∗

Age 0.007 0.005 0.006 0.004 0.006 0.004
[0.000]∗∗∗ [0.000]∗∗∗ [0.000]∗∗∗ [0.000]∗∗∗ [0.000]∗∗∗ [0.000]∗∗∗

School Years 0.101 0.075 0.081 0.058 0.082 0.057
[0.001]∗∗∗ [0.001]∗∗∗ [0.001]∗∗∗ [0.001]∗∗∗ [0.001]∗∗∗ [0.001]∗∗∗

Coethnic Share -0.163 -0.115 -0.018 0.041 -0.263 -0.254
[0.029]∗∗∗ [0.031]∗∗∗ [0.033] [0.035] [0.022]∗∗∗ [0.026]∗∗∗

Mean Dep. Var -0.017 -0.017 -0.017 -0.017 0.021 0.007
Observations 359,411 395,543 359,401 395,529 183,244 199,415
Destination FE N N Y Y Y Y
Ethnicity FE Y Y N N N N
Migrant Only N N N N Y Y

Notes: This table estimates observational returns to migrations from di�erent model speci�cations. The outcome �Durables"
is the �rst principal component of several binary variables for di�erent assets, including electricity, phone, car, fridge,
television and bicycle. The outcome �House Quality" is the �rst principal component of reported wall, roof and �oor
material of the house. Origins are ethnic homelands, and destinations are administrative units at the second level. The
�rst two columns include ethnic group �xed e�ects to isolate variation within ethnic group across destination and migrant
status. Columns 3-6 include destination �xed e�ects to isolate variation within destination across migrant status. All
regressions include country-year �xed e�ects. Standard errors are clustered at the DHS sampling cluster level. * p<0.01,
** p<0.05, *** p<0.01.

endogenously determined by a destination's productivity. I use a shift-share instrumental variable

strategy to overcome this identi�cation challenge. The IV strategy adds a nonlinear component to a

standard migration shift-share to simultaneously instrument for migrant size and composition. In the

main analysis, the shifts are birthplace level outmigration rates, while the shares are origin-speci�c

settlement shares at destination. Changes in migrant size and diversity are predicted as linear and

nonlinear combinations of these shifts and shares. In a secondary analysis, I then isolate exogenous

variation in the outmigration shifts using birthplace-level push shocks that move migrants in or out

of their birthplace over time. Third I use destination-speci�c pull characteristics to isolate exogenous

variation in settlement shares.

The strategy starts from an equation of interest that relates a destination's productivity to both

migrant labor size and diversity. For a given destination d in year t, the equation of interest is:

yd,t = β1ld,t + β2divd,t + υt + γd + ϵd,t (7)

where yd,t is a proxy for log wages, or another city-level outcome. The logged migrant labor

force size is ldt, and the diversity of the migrant labor force is represented by divdt. The diversity of

the labor force is a measure of the distribution of groups within the labor force. I use a Her�ndahl

measure of the concentration of groups. For exposition, I speci�cally use the negative of a Her�ndahl

index as the measure of �migrant diversity", which is the inverse of the concentration of birthplaces.

For workers coming from a set of birthplaces o ∈ O and arriving in destination d, I calculate divdt

as:

−divdt =
∑
o

π2
odt (8)
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Figure 3: Relationship between Diversity (HHI) and Labor Variables

(a) Worker Diversity vs. Log Total Labor (b) Migrant Diversity vs. Log Migrant Labor

Notes: This �gure shows scatterplots relating diversity and labor at the destination-year level. The left panel plots total worker
diversity against total log labor size, while the right panel looks at migrant diversity against migrant log labor size. The blue line
is a line of best �t across all points, while the red line is a local polynomial �t with con�dence bands.

where πodt is share of people in d at t from o countod
countd

. As this number moves from 0 to 1, the

composition of migrants moves from totally homogeneous to perfectly heterogeneous in terms of

birthplaces. Scholars have used a variety of other indices for diversity, including fractionalization,

which is the inverse of a Her�ndahl Index, and polarization, which is more sensitive to large, equally

sized groups. I choose to use the HHI because it is the simplest functional form of diversity to

integrate into a shift-share design, and is highly correlated with other popular measures.

Theoretically we expect workers to sort into cities that o�er higher wages (Combes et al., 2010).

Therefore productive cities should attract a higher number of workers from a greater set of origins,

creating a correlation between higher ydt, higher ldt and higher divdt. I address the endogeneity of

migrant �ows and destination outcomes in the sections that follow. Section 3.1 describes a shift-

share instrument that can incorporate nonlinear functions of migration like the diversity HHI. Then,

I describe the exclusion restriction of the instrument in section 3.2. Sections 3.3 and 3.4 discuss

extensions using pull and push shocks to predict outmigration shifts and pre-period settlement shares.

3.1 A Shift-Share Instrument for Migrant Birthplace Diversity

The goal is to develop a shift-share instrument for both the level of migration and its diversity,

as measured by a birthplace HHI. I take inspiration from Schubert et al. (2024), which studies

the e�ect of �rm concentration on wages using a �rm-level Bartik shock as an instrument for the

change in employer labor market concentration. Similar to my setting, Schubert and co-authors

instrument for an HHI variable as a function of Bartik style shifts and shares. I adapt this approach

to the construction of two simultaneous instruments in a migration setting. In the case of migrant

labor, the instrument is the aggregation of birthplace outmigration shifts and destination settlement

shares. For example a given destination like Kigali Rwanda has a certain fraction of all migrants

from birthplace Kirehe, in the East. The change in migrant labor from Kirehe is a combination

of pre-period settlement shares of Kirehe migrants in Kigali, combined with shifts in the aggregate

migration rate from Kirehe to all destinations. The change in the total number of people from

Kirehe living outside Kirehe across census years constitutes a shift. To instrument for diversity, the

destination settlement shares are weighted by the squared relative growth rates of each birthplace's

migrant �ow. The key is that this aggregation is a nonlinear combination of the individual shift-

shares. The nonlinearity of the function mapping the shift-shares to aggregate diversity allows for

the same set of shift-shares to predict both endogenous variables.

I begin by di�erencing equation 7 between censuses, which are typically 10 years apart in our
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data:

∆yd,t−(t−10) = β1∆ℓd,t−(t−10) + β2∆divd,t−(t−10) + ϵd,t (9)

I instrument for ∆ℓdt and ∆divdt using decade level shifts from di�erent ethnic homelands and

baseline ethnic shares.

Each origin o has a number of out-of-homeland migrants counto,t, which I de�ne as the aggregate

number of people from o observed outside of that homeland in a given census year. Our shifts are

the growth rates in the number of people from o observed outside of their origin, which we de�ne as

go,t =
counto,t−counto,t−10

counto,t−10
.

Each destination d is exposed to these shifts weighted by their baseline settlement share of people

from that origin in the previous census period. For a given year these settlement shares are the

fraction of people from o in d relative to the full migrant population from o: Sharesodt =
countodt∑
d countodt

We can predict the change in labor demand in the region d as the sum of the shifts and shares:

∆L̂dt =
∑
o

countod,t−10∑
d countod,t−10

∗ go,t ∗ counto,t−10 (10)

In the analysis, we take a log of this predicted value as our measure ∆ℓ̂.

To predict a change in diversity, I start from a de�nition of the change in birthplace concentration.

Following the HHI formulation above, change in the relative concentration of migrants from di�erent

o living in destination d is:

−∆divd,t =
∑
o

π2
odt −

∑
o

π2
od,t−10 (11)

This equation can be written as a function of the initial concentration in the base period, and

the respective growth rates of migrants from o to d, and the total change in the migrant labor force

at d. The equation becomes:

−∆divd,t =
∑
o

π2
od,t−10

(
(1 + godt)

2

(1 + gdt)2
− 1

)
(12)

Where mechanically the change is a function of the growth in the number of people o in d, godt

relative to the total growth of population in d, called gdt. The negative term at the front of the

equation reverses the order, such that increasing levels represent lower Her�ndahl concentration and

higher birthplace diversity.

Both godt and gdt are likely correlated with contemporary productivity in the destination. An

instrument replaces the endogenous current period divdt by substituting aggregate shifts for the two

growth rates in equation 12. In particular, our instrument is:

−∆d̂ivdt =
∑
o

π2
od,t−10 ∗

(
(1 + got)

2

(1 + g̃odt)2
− 1

)
(13)

Where got is again the aggregate growth of migrants out of an origin and g̃odt is a predicted

growth of migrant labor in destination d de�ned as
∑

o πod,t−10 ∗ got.

3.1.1 Functional Relationship of Composition, Population and Productivity

The estimation strategy leverages two functional forms for an instrument that aggregates shifts got

and shares πodt across origins. This is possible because of the nonlinear relationship between the

migration levels and their composition. Two potential issues emerge from this. First, the linear

correlation between migrant levels and composition reduces the power of the estimates. Intuitively,

the more related migrant levels and composition are, the less added variation is introduced by the

second instrument. I show this in a simulation exercise in Appendix A, in which I calculate a

distribution of beta coe�cients as the linear correlation between migrant labor size and migrant

diversity varies. In Figure 3 I plot the cross-sectional relationship between migrant diversity and
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Figure 5: Migrant Size and Composition on Light Density

(a) Migrant Labor Size and Light Density (b) Migrant Diversity and Light Density

Notes: This �gure shows scatterplots relating migrant diversity, migrant labor size and light density at the destination-year level.
The left panel plots migrant labor size against contemporary logged light density, while the right panel looks at migrant diversity
against contemporaneous log light density. The blue line is a line of best �t across all points, while the red line is a local polynomial
�t with con�dence bands.

migrant labor size. In general while the variables are related, the relationship is not strongly linear.

This fact allows us to be more con�dent that migrant level changes do not linearly predict composition

changes, and that both instruments provide identifying variation to the empirical estimates.

Second, we don't know ex-ante the functional relationship between city diversity and productivity.

Panel B of Figure 5 presents the cross-sectional relationship between city diversity and light density

in destinations. In the cross-section, I �nd a positive and linear relationship between worker diversity

and light density. Cities that are bigger and less homogeneous are higher income. This cross-sectional

result is consistent with the subnational associations studied by Montalvo and Reynal-Querol (2021).

In their paper, the authors argue that, while country-level regressions show a negative relationship

between higher diversity and light density, at the subnational level this relationship is reversed. Their

work leverages historical diversity measures from anthropological maps, rather than census-reported

ethnic mix. However, the mechanism that drives their correlation is presumably the same � certain

places that are high productivity attract more people, from more diverse sources. The goal of this

paper is to move beyond these cross-sectional associations, and study a causally motivated estimate

in �rst di�erences.

3.2 Exclusion Restriction

The exclusion restriction requires that the drivers of aggregate shifts out of a birthplace are not

correlated with productivity shifts at particular destinations. For example, this would be violated if

productivity gains in certain major cities like Kigali drive aggregate migration trends out of certain

birthplaces. Borusyak et al. (2022) describes the exclusion restriction assumption in shift-share

designs in which exogeneity comes from the individual shocks. In our setting the shocks are the

estimated got outmigration rates from origins o in period t. Borusyak and co-authors show that the

exclusion restriction in this case is equivalent to an orthogonality condition at the birthplace level.

In particular, given regional exposure weights so and a distribution of unobservables ϕo:

E[got|ϕo] = µ (14)

A second requirement is that the shocks are independent and exposure is dispersed across birth-

places. In particular:

E[(g1t − µ)(g2t − µ)|ϕ1, ϕ2] = 0 (15)

The dispersion condition can be de�ned as a Her�ndahl index that goes to zero as the number
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of birthplaces increases:
∑

o s
2
o → 0.

While I can't directly test these conditions, I perform several tests at the birthplace level. First,

I derive shift-share standard errors that address the possible covariance between go and ϕo following

Borusyak et al. (2022). These estimates are presented in Figure B5. Second, I check pre-trends by

running birthplace-level regressions of the exposure-weighted residuals of destination characteristics

on our growth rate shocks. This analysis is produced in Figure B7. The destination characteristics

I include are geographical characteristics such as disease ecology and soil suitability, as well as past-

period light density. I show that my birthplace shocks are uncorrelated with pre-period destination

characteristics. Another way to address endogeneity concerns is to directly leverage plausibly exoge-

nous variation in shifts and shares. I describe two potential strategies in the following sections that

utilize migration push shocks and pull characteristics.

3.3 Predicting Outmigration Shifts with Push Shocks

In the standard migration shift-share, the shift terms go are the real change in the number of people

leaving origin o across years. The argument for exogeneity comes from an assumption that past

shares are unrelated to current period changes in outcomes, except through the labor and composition

channels. Since our speci�cation is in di�erences, this is comparable to a parallel trends assumption

in a di�erence-in-di�erences design, but with many individual treatment exposures to the aggreage

shift treatment (Borusyak et al., 2025; Goldsmith-Pinkham et al., 2020). This may be violated in

cases where changes in particularly large labor markets drive got or when country-wide shocks a�ect

both the total outmigration rate and particular destinations (Jaeger et al., 2018). Many migration

paper have considered instrumenting for shifts in the outmigration rates from origins using push

shocks (Mullins and Bharadwaj, 2021; Boustan et al., 2010; Bazzi et al., 2023; Kamuikeni and Naito,

2024). If the push shocks are plausibly uncorrelated with destination outcomes, then a zero-stage

regression of outmigration on push shocks can isolate exogenous variation in migration shifts. I

consider the total outmigration from a given origin o and year t as a function of a set of past shocks

shocko,t−y, where the shocks are measured at some lag y from the current period:

got = ω1log(Shock)o,t−y + υo + δst+ ϵot (16)

I include a linear time trend δst and origin �xed e�ects υo
4. I substitute these predicted outmi-

gration rates ĝot for the raw shift got in equations 10 and 13.

Past work on the historic US has leveraged a variety of local economic conditions and weather

variables (Boustan et al., 2010; Bazzi et al., 2023). In developing countries, estimates of migration

elasticities to income or other shocks vary by context. For example, income shocks have been shown to

move migration both positively and negatively depending on the country and time period (Marchiori

et al., 2012; Bazzi, 2017; Shrestha, 2017). My strategy is to consider a set of plausible local shocks

that may move outmigration. In a zero stage, I consider each shock and its lags separately, and then

perform a joint estimation of the relevant shocks to predict the outmigration rate. I consider climate

variables, con�ict and international commodity price changes, weighted by local exposure.

3.4 Predicting Settlement Shares with Pull Characteristics

Even with a predicted �ow estimated for got, another concern may be that previous period settlement

patterns are correlated with current period labor demand shocks in destinations. This may be the

case if a given settlement of migrants was driven by a previous labor demand shock, and demand

shocks are serially correlated in destination (Jaeger et al., 2018). Instead of using past settlement

patterns as exposure shares, I consider replacing the shares with a gravity-model prediction of which

4Another option would be to use year �xed e�ects in this regression. As noted by Mullins and Bharadwaj (2021),
this isolates variation in the shock between counties in the same year. But this speci�cation considers only short term
adjustments to weather. Because my migration adjustments are across decades, I substitute the year �xed e�ects for state
speci�c linear time trends. This allows for detrended variation within origins over time to predict the migration rate.
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destinations migrants are likely to choose. In particular I construct instruments for settlement shares

of origins in destinations as a function of the o-d distance between regions and the interaction of

distance with a set of �pull characteristics".

I estimate migrant shares of o in d as

σodt = ω1Pulld ∗ log(Dist)od + ω2log(Dist)od + ω3log(Dist)od ∗ Zd + µd + υo + γt + ϵodt (17)

Where σodt represents the migrant shares σodt =
countodt∑
d countodt

. The vector Zd represents a set of

historical destination characteristics that predict the attractiveness of destinations. We can think of

these as historical shocks that predict which locations are more predisposed to urban growth. The

key is that these pull characteristics Z are not correlated with contemporary shocks to demand. In

particular, we use distance to colonial rail lines, mineral deposits and portage sites as predictors of

destination attractiveness. We run the same regression to separately estimate πodt for our prediction

of diversity change.

3.4.1 Historical Pull Characteristics as Predictors of Agglomeration

My pull characteristics draw on historical sources of agglomeration unrelated to contemporary pro-

ductivity. Colonial railroads were often built to connect coastlines to a particular resource in the

interior of the country. An example is the British Uganda railway, which connected Mombasa on

the coast to Lake Victoria for geopolitical reasons. This railway incidentally also increased the pro-

ductivity of regions that lay along the least-cost path between these points. Human settlements

grew everywhere along the railway, and the railway's path within Kenya predicts the location of

contemporary Kenyan cities (Jedwab et al., 2017). In Jedwab and Moradi (2016) the authors show

that colonial rails continue to predict urban agglomeration, long after the rail lines fell into disuse.

I calculate a distance to the nearest colonial rail line as a predictor of a destination's attractiveness,

or �agglomeration potential".

I next consider a destination's propensity to be a portage site (Bleakley and Lin, 2012). Maritime

trade often requires ships to move inland from the coast along navigable rivers. Sharp changes in

elevation along rivers create rapids and waterfalls, preventing large ships from traveling further. It

becomes necessary to create infrastructure at the point at which a river is no longer navigable to

transfer goods from ships to land transport. Prior work in the US has shown that many US cities

developed along the Atlantic Seaboard Fall Line, which creates a point of elevation change at which

inland rivers are no longer navigable on the east coast (Bleakley and Lin, 2012). Using the same

logic, I create a prediction of rapids and waterfall locations along African rivers. Non-navigable

river segments are predicted using HydroSHEDS data on river discharge. In particular I measure the

change in river discharge (cubic meters per second) along each river network. I de�ne possible portage

sites as places where the size class of a river, which is a logarithmic function of discharge, changes.

Each potential portage site is then saved as a point in space, and joined to the administrative census

regions. Figure 7 shows an example of predicted portage sites along the Congo River, along with a

map of the river network and associated cities. We see for example that the mouth of the river in

the West shows a high portage propensity near where the Congo River has large rapids that precede

the city of Kinshasa.

Last I consider historical mineral deposits as a predictor of past urban growth. This intuition

follows Combes et al. (2010) in using geological factors as an instrument for contemporary agglom-

eration. While deposits should be related to historical roads and infrastructure, they should not be

related to contemporary demand shocks. Using interactions of the pull characteristics and origin-

destination distance, I instrument for settlement shares for each origin-birthplace pair in a baseline

period. I then merge these predicted shares with the outmigration shifts from the baseline analysis.

In an additional section, I explore a second use for these historical pull characteristics in estimating

long-run dynamics. The main results of the paper consider contemporary changes in diversity and

migrant labor across 10-year census periods. To understand the longer term relationship between
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Figure 7: Portage Sites, DRC Example

(a) River Network Map (b) Portage Propensity

Notes: This �gure shows an example of the portage score estimation for the portage pull characteristic. The left panel shows a
map of the Congo river network, with locations of cities and rapids. On the right I plot my estimated portage points, which are
located in bright yellow. All colors re�ect nearest distance to these estimated portage sites, which is our portage score.

migrant diversity and urban growth, I need a strategy that can be estimated in a cross-section,

and doesn't rely on data that captures di�erences over census years. The ideal experiment would

place urban centers at random locations across Africa, and expose them to di�erent levels of migrant

worker diversity. Then I would compare the growth prospects of cities located in more or less dense

areas, with more or less worker ethnic diversity. To proxy for this idealized experiment, I run a

cross-sectional regression that interacts my historical instruments for agglomeration with historical

measures of regional diversity. I use my agglomeration insturments as predictors of city location,

and evaluate outcomes in cells that were historically likely to agglomerate. The interaction between

the agglomeration instrument and regional diversity measures allowes me to compare two cells that

were both predicted to agglomerate, but were exposed to di�erent ex-ante levels of worker diversity.

The empirical strategy is discussed in greater detail below.

4 Results

In this section I will �rst discuss the results of the nonlinear migration shift-share instrument using

standard outmigration shifts and pre-period settlement shares. I will then discuss results from

di�erent predictions for shifts and shares using pull and push shocks. I show zero-stage regressions

of push shocks predicting outmigration rates at the birthplace level, and then show the results for

the �rst and second-stage SSIV.

In Section 4.1, Table 2 and Table 3 show the �rst and second stage results of a regression of

outcome in destination d and time t, instrumenting for ∆ℓ and ∆div:

∆yd,t = α∆l̂d,t + γ∆d̂ivd,t + ϵd,t (18)

I �nd that level increases in migrant labor size predict increases in city size, as measured by

average light density change, but do not correpsond to changes in per-capita light density growth.

Increased migrant labor causes cities to grow, but does not map to clear e�ects on either productivity

growth or urbanization. As the migrant labor pool becomes more diverse, cities grow slower and

have lower productivity in terms of light density changes. However, increasing diversity of migrants

predicts higher rates of urbanization, as captured by an increasing non-agricultural labor share.

This suggests that migrant composition may have a positive bene�t on industry mix, and yield

long-term gains even if there are short-run costs. This argument is substantiated in the long-run

estimates of diversity and city growth produced in Table 12. In the long-run, I �nd evidence of
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positive interactions between diverse migrant labor and historical productivity shocks, suggesting

that bene�ts of migrant composition manifest over longer periods.

In section 4.2 I �rst consider the e�ect of push shocks as an instrument for the measured

birthplace-level shifts got. I �nd that drought predicts lower outmigration, while con�ict predicts

higher outmigration from birthplace. I �nd heterogeneous e�ects of prices across commodity type

and time horizon. Leveraging a combination of push shocks to predict got, I re-run our 2SLS regres-

sion and �nd that the �rst stage succeeds in predicting changes in labor size and composition. I �nd

that the e�ects of migrant labor size are consistent, and that migrant diversity continues to predict

higher urbanization rates.

In section 4.3 I instrument for settlement shares using the interaction of distance with the mea-

sured destination-level pull characteristics. I show consistent results of migrant labor size causing

lower productivity growth in terms of light density per capita. However, the joint F-statistics in this

�nal exercise are too weak to draw strong conclusions.

In section 4.4 I consider heterogeneity in the returns of migrant diversity by evaluating a natural

experiment. I leverage the fact that South Africa's Apartheid regime generated high migration

barriers, which were suddenly dropped in the 1990s. The end of migration restrictions for black

workers provides a plausibly exogenous shift in the outmigration rates (got) from South Africa's

native homelands. Following the baseline shift-share model, I instrument for changes in migrant

labor size and diversity at destination. In this exercise I isolate variation in the composition of the

black migrant composition, rather than the relationship between the black and white population.

While the estimates are weaker due to low sample sizes, I �nd that the impact of migrant diversity

in this context is inverted. Black migrant diversity in South Africa contributes to higher city size

growth and city productivity. I interpret this as evidence that some African states are able to

overcome linguistic and ethnic di�erences and bene�t from diverse birthplace composition.

4.1 Baseline Results: Standard Shift-Share with Nonlinearity

Table 2 presents the results for the �rst stage of the aggregate shift-share, as described in equation

9. The predicted variables are the aggregations of baseline shares in the previous census years, and

aggregate shifts across census years. The linear and nonlinear shift-share instruments are strong

predictors of the real di�erences in migrant labor and migrant diversity. Surprisingly, predicted

l also predicts lower diversity (higher HHI), which means larger total migration shifts are typi-

cally also more homogeneous. We'd normally expect larger shifts in migration to require a broader

composition, as migrants come from further and further locations to meet a destination's labor de-

mand. The inverted correlations between diversity and migrant labor provide further evidence that

the relationship between the two instruments is nonlinear. The jointly calculated F-statistics and

Sanderson-Windmeijer values are presented in Table 3.

Panel A in Table 3 gives the OLS estimates of a regression of migrant labor and diversity on

light outcomes. Column 1 measures the standardized change in average light density, while column 2

measured the change in the log of per-capita light density. These measures capture di�erent aspects

of light density change at destination. The �rst is related to city size and extent, as expanding cities

increase average light density. The second has historically been compared to GDP/capita growth.

As other measures of urban productivity, I include changes in the non-agricultural labor share and

changes to the housing quality index, both measured from census data. I �nd that a 1% increase in

migrant labor size corresponds to a 0.19 SD increase in average light density, and a .76% decrease

in light density per capita growth. The diversit term is measured as changes in a 0 to 1 measure of

diversity. Moving from a completely homogeneous to a perfectly heterogeneous migrant labor pool

is associated with a 1.3 standard deviation drop in average light density and 3.4% reduction in light

density per capita growth. I �nd that an increase in migrant diversity is also related to a substantial

increase in non-agricultural labor share. Going from 0 to 1 on a diversity measure is associated with

0.86 percent point increase in the non-agricultural labor share.
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Table 2: Census Birthplace Shift-Share First Stage

(1) (2)
Migrant Flows

∆ ℓ ∆ div

Predicted ∆ ℓ 0.452 -0.004
[0.027]∗∗∗ [0.001]∗∗∗

Predicted ∆ div 1.847 0.558
[0.447]∗∗∗ [0.110]∗∗∗

Mean Dep. 7.58 -0.01
Observations 829 829

Note: This table estimates the �rst-stage regres-
sion of predicted on real changes in migrant labor

and composition reald,t = α∆̂ld,t + γ∆̂divd,t +
υt+µc. ∆l is the logged di�erence in total migrant
labor in destination d between census years. The
predicted value is the shift-share instrumented
change in migrant labor. ∆div is the di�erence
in the negative HHI between census years for all
non-native residents in location d. The predicted
value is the estimated change in HHI based on the
relative aggregate shifts and shares across origins.
Regressions include �xed e�ects for country and
year. Data for this table comes from an origin-
destination panel of workers in African IPUMS
Census samples. * p<0.01, ** p<0.05, *** p<0.01.

Panel B in Table 3 shows the second stage regression using the aggregate shift-share instruments

for migrant labor and diversity. The OLS and IV results are broadly consistent. Total migrant labor

size is positively related to city size growth, but negatively related to per-capita productivity growth.

The size of the coe�cients are larger. A 1% increase in migrant labor size yields a .3 SD increase

in average light density, and a -2% drop in per-capita light growth. A 0 to 1 increase in migrant

diversity reduces average light density by -2 SD, and per-capita growth by -10%. The change in the

non-agricultural share is more than a 1 for 1 increase.

To better interpret these measures, I take a set of censuses from non-African developing countries

and replicate the shift-share exercise using available birthplace data from these countries. I then

measure light density changes across census years for these countries. The strength of the linear and

nonlinear shift-share instrument varies across these countries. I take the estimated coe�cient on

changes in migrant labor and migrant diversity, and plot them in two dimensions to compare with

the African sample. I �nd that my esitmated impact of migrant labor size corresponds to higher city

size growth and lower productivity growth relative to other developing countries. This suggest that

level changes in migrant labor increase African city sprawl and extent without translating to faster

per-capita growth. Across both light density measures, the African estimated impacts of migrant

diversity are much lower than the non-African sample. The impact of migrant diversity on lower city

night light density and per-capita growth is nearly double the estimates of non-African developing

countries.

Table B3 shows the same regressions but for alternative destination outcomes. I include the levels

of log light density, the change in services labor share, and the levels of housing wealth. share of the

native workforce dedicated to services. I �nd that higher migrant diversity predicts higher services

share, lower average light density in levels, and higher average levels of housing wealth. These level

relationships between migrant diversity and light and housing levels suggest that migrant diversity

is associated with destinations that may be smaller but wealthier on average.
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Table 3: Census Birthplace Shift-Share Second Stage, Migrant Flows

Panel A: OLS Results

(1) (2) (3) (4)
∆ Lights ∆ Log(Lights/Capita) ∆ Non-Agriculture Share ∆ Housing Quality

∆ ℓ 0.189 -0.763 -0.030 0.039
[0.043]∗∗∗ [0.079]∗∗∗ [0.016]∗ [0.041]

∆ div -1.375 -3.397 0.860 -0.453
[0.360]∗∗∗ [1.080]∗∗∗ [0.278]∗∗∗ [0.512]

Mean Dep. -0.00 3.31 0.09 0.01
Observations 829 829 634 671

Panel B: Shift-Share IV

∆ Lights ∆ Log(Lights/Capita) ∆ Non-Agriculture Share ∆ Housing Quality

∆ ℓ 0.296 -2.081 -0.060 0.126
[0.100]∗∗∗ [0.173]∗∗∗ [0.036] [0.092]

∆ div -2.091 -10.304 1.310 -0.135
[0.703]∗∗∗ [2.757]∗∗∗ [0.586]∗∗ [0.695]

Mean Dep. -0.00 3.31 0.09 0.01
Observations 829 829 634 671
Kleibergen-Paap Fstat 16.462 16.462 13.716 26.970
Sanderson-Windmeijer ℓ 245.593 245.593 141.084 106.168
Sanderson-Windmeijer div 27.686 27.686 23.386 19.570

Note: This table presents the results of a second-stage regressions of instrumented changes in migrant labor size and
composition on destination productivity outcomes. Panel A presents the OLS estimation of changes in migrant labor and
diversity on light density outcomes. yd,t = α∆ld,t +γ∆divd,t +υtc. Panel B presents the IV 2SLS estimation of changes in
migrant labor and diversity on light density outcomes. The original harmonized range of light density is from 0 to 63. The
�rst column outcome is the standardized change in average light density, while the second column is the log change in light
density per capita. The third column outcome is the change in labor share in non-agricultural industries, and the fourth
column measures changes in housing quality, measured by a principle component of housing characteristics. All regressions
include country-year �xed e�ects. Data for this table comes from an origin-destination panel of workers in African IPUMS
Census samples. * p<0.01, ** p<0.05, *** p<0.01.

Figure 9: Comparing Migration Estimates to Other Samples

(a) ∆ Lights (b) ∆ Log(Lights/capita)

Notes: This �gure compares the shift-share migration estimates for ∆ℓ and ∆div to a sample of other countries available from
IPUMS. The coe�cients of the SSIV are plotted in 2-d space. The same shift-share estimate represented in Table 3 is estimated
at the second administrative level for Cambodia, Chile, Indonesia, Mexico, Peru and Thailand. For each country, the available
birthplace data is used to calculate migrant labor size and diversity. Birthplace is at the state level for Mexico, province for
Peru, Thailand and Indonesia, commune for Chile, municipality for Colombia, and district for Cambodia. IV regressions include
country-year �xed e�ects. Gray bars plot the standard errors from the SSIV. Horizontal bars represent the SEs on the diversity
coe�cient, while the vertical bars represent the SEs on the labor coe�cient. Coe�cients for labor and diversity in Table 3 are
presented in red. The original harmonized range of light density is from 0 to 63. The �rst panel outcome is the standardized
change in average light density, while the second panel is the log change in light density per capita. Data for this table comes from
an origin-destination panel of workers in African IPUMS Census samples.

22



4.1.1 Robustness Checks of Shift-Share

I perform a variety of robustness checks for our results. To address concerns about the correlation of

outcomes like light density across administrative regions, Figure B9 and Figure B10 show robustness

to Conley spatial standard errors across a variety of distance bandwidths. Next I test the sensitivity

of our results to changes in our sample. Figure B11 and B12 show how the estimates vary when

dropping individual countries from the sample. Last I check the results when replacing the real

estimated birthplace shocks with randomly distributed placebo shocks. Figures B13 and B14 show

how the IV results appear in response to placebo shocks.

In these robustness results, I �nd some sensitivity to country drops, due to the short-panel

structure of our data. Results are robust to spatially correlated errors across bandwidths. The

placebo shocks help us understand how our shift-share results leverage variation from the shifts and

shares portions of our instrument construction. While placebo shocks produce zero-results for our

diversity estimator, the logged light density per capita outcome in the labor shift-share estimate is

biased upward under placebo shocks. This suggests that some identifying variation is coming from

the settlement shares. The prediction of settlement shares leveraging distance and pull characteristics

will allow us to isolate exogenous variation in settlement shares.

4.2 Instrumenting Outmigration Shifts with Push-Shocks

Next I look at the estimation results when instrumenting for aggregate shifts using push-shocks. As

described in the empirical strategy, I predict the aggregate shifts in migrant labor using shocks, or

the changes between origin-destination pairs. We present the results of this analysis in three parts.

First, we estimate zero-stage relationships between the raw number of people leaving birthplaces and

di�erent potential migration shocks. We �nd that climate and price variables do predict population

movements at di�erent lags from the contemporary period. Leveraging this result, we then estimate a

�rst-stage regression that leverages predicted got variables in our shift-share design, producing push-

shock motivated instruments for migrant labor size and migrant composition. We �nd that the push

shock version of our �rst stage is still able to predict changes in both migrant labor and migrant

composition. Next, we leverage this �rst stage to look at our destination productivity outcomes.

While the results for migrant labor e�ects remain consistent, our second stage for diversity is too weak

to consistently estimate an e�ect. We conclude that the bene�ts of migrant labor density outweigh

potential costs of migrant diversity, at least among migrants motivated by birthplace shocks.

4.2.1 Zero-Stage Regressions of Migrant Flows on Shocks

Table 4 shows the results of regressions of the log population from o in destination d on shocks at

di�erent lags from the current period. The �rst column includes country �xed e�ects, the second

column includes birthplace �xed e�ects, and the third column includes 10-year lags of the given

variables. The outcome in columsn 1-3 is the number of people living outside of the given birthplace

in a given year. I �nd that con�ict consistently predicts greater outmigration. Contemporary drought

conditions prevent migration, which is consistent with a model where negative wealth shocks prevent

households from migrating (Bazzi, 2017). High agricultural prices in the contemporary period also

encourage migration, which is also consistent with a model where positive wealth shocks increase

migration. Di�erent shocks to birthplaces may not only drive di�erent levels of outmigration, but

also may change the skill-level composition of the marginal migrant. If the type of workers who leave

in response to high commodity prices are di�erent from workers that leave in response to con�ict,

then changes in migrant out�ows also re�ect average skill level changes. Columns 4-6 show the results

when the population counts are weighted by human capital, de�ned as schooling years for workers

18 and above. These labor e�ciency units for a given origin-destination pair are an aggregation

of these weighted population counts, de�ned as leod =
∑N

i hi, where hi are schooling years for an

individual i from o living in d. The results are fairly consistent when using labor e�ciency unites
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Table 4: Predicting Outmigration with Contemporary and Lagged Shocks

(1) (2) (3) (4) (5) (6)
Migrant Flow Labor E�ciency Units

log(N) log(N) log(N) log(le) log(le) log(le)

Drought -1.308 -0.288 0.002 -14.324 -23.666 -23.926
[0.393]∗∗∗ [0.263] [0.259] [0.984]∗∗∗ [1.393]∗∗∗ [1.423]∗∗∗

Agricultural Price 0.168 0.287 0.676 -0.010 -0.043 1.002
[0.067]∗∗ [0.064]∗∗∗ [0.077]∗∗∗ [0.186] [0.288] [0.398]∗∗

Mineral Price -0.010 -0.048 -0.131 0.012 0.040 -0.229
[0.062] [0.068] [0.067]∗ [0.144] [0.283] [0.282]

Con�ict 0.018 0.016 0.002 0.000 -0.016 0.019
[0.004]∗∗∗ [0.004]∗∗∗ [0.004] [0.010] [0.015] [0.018]

Year 7.068 6.815 5.503 4.483 7.173 2.533
[0.944]∗∗∗ [0.578]∗∗∗ [0.604]∗∗∗ [2.458]∗ [2.916]∗∗ [2.958]

Year2 -0.002 -0.002 -0.001 -0.001 -0.002 -0.001
[0.000]∗∗∗ [0.000]∗∗∗ [0.000]∗∗∗ [0.001]∗ [0.001]∗∗ [0.001]

Lagged Drought 0.472 13.785
[0.694] [3.625]∗∗∗

Lagged Agricultural Price -0.652 -1.840
[0.087]∗∗∗ [0.438]∗∗∗

Lagged Con�ict 0.029 -0.070
[0.006]∗∗∗ [0.024]∗∗∗

Mean Dep. Var 7.264 7.447 7.447 8.534 8.492 8.492
Observations 2,252 1,944 1,944 1,473 1,423 1,423
Country FE Y Y Y Y Y Y
Origin FE N Y Y N Y Y

Notes: Each column is a joint regression of migrant �ows in terms of population or labor e�ciency units on a
set of contemporary and lagged shocks. The drought index is the SPEI indicator for drought intensity at an
annual level. The agricultural prices are a weighted regional price exposure aggregated from individual crop
shares and international prices normalized to 2000. Mineral prices are weighted by mineral and mine capacity
in the origin location, and con�ict represents the number of ACLED events. Lagged shocks represent average
changes in the variable in the last 10 years. All regressions include country �xed e�ects. Year is included as a
linear and squared value.

rather than log counts, although the standard errors are larger as the weighting introduces more

dramatic variation. In column 6 there is evidence that lagged con�ict has a negative impact on labor

e�ciency units, which is a �ip in the sign relative to column 3. While past period con�ict events

move more individuals out of origins, the marginal migrant is has lower schooling years. As expected,

di�erent types of shocks have di�erent implications for the human capital of the marginal migrant.

In the section on mechanisms, I directly consider the impact of outmigration shifts on changes to

the average skill level at destination.

To better understand the dynamic impact of di�erent shocks on outmigration, Figure 11 plots the

beta coe�cients of individual regressions of migration counts against particular shocks at di�erent

lagged periods. Each dot represents a particular shock variable at a particular time horizon relative

to the migration count year. We �nd that, when estimated separately, the e�ects of drought and

con�ict are consistent across time horizons, but that commodity prices show heterogeneity. Recent

price spikes increase migration, while historical price spikes decrease migration. This suggests that

long-run trends in hig prices for key commodities convince more people to stay in their birthplace.

4.2.2 First and Second Stage Estimates using Predicted Shifts

Panel A in Table 5 shows a �rst stage regression of equation 9 where the got growth rates are instru-

mented using the predicted outmigration shifts. The prediction model used leverages contemporary,

1 and 10-year lags of the selected push shock variables drought, con�ict and commodity prices. I also

include a linear time trend in our prediction model. I �nd that the shift-share with predicted shifts

successfully predicts changes in migrant labor size and composition. This result suggests that push-

shocks have an e�ect on both migrant �ows and the mix of migrants that arrive. Panel A of Table 6

gives the second stage regression of equation 9 using the predicted migration shifts. I �nd that mi-

grant labor size is positively related to growth in city size, but negatively related to per-capita growth
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Figure 11: Predicting Outmigration with Individual Shocks Across Horizons

Notes: This column shows beta coe�cients from individual regressions of birthplace-level outmigration rates on individual
shocks at di�erent horizons. The lags are at the 1 and 10-year horizon.

in light density. I also �nd that increases to migrant labor size predict decreasing levels of housing

quality at destination. This is consistent with a story of increasing migration driving higher housing

prices and slum formation at destination. The estimates for diversity impacts on light density are

too noisy to make an inference. However, I �nd consistent evidence that incrasing migrant diversity

predicts higher non-agricultural labor share. This lends further evidence that migrant diversity has

consistent impacts on urbanization and structural transformation in destinations.

4.3 Instrumenting Settlement Shares with Pull Characteristics

The placebo shocks exercise from the headline shift-share estimation showed that some variation

in the instrument for labor size changes may be coming from endogenous shares. In this section

I leverage pull characteristics interacted with origin-destination distances to isolate an exogenous

component of settlement shares. The implicit assumption is that the historical pull characteristics,

including distance to colonial rail, mineral deposits and portage sites are unrelated to contemporary

labor demand shocks. In a zero stage regression, I predict the following settlement share variables:

σodt = ω1Pulld ∗ log(Dist)od + ω2log(Dist)od + ω3log(Dist)od ∗ Zd + µd + υo + γt + ϵodt (19)

πodt = ω1Pulld ∗ log(Dist)od + ω2log(Dist)od + ω3log(Dist)od ∗ Zd + µd + υo + γt + ϵodt (20)

Where σodt represents the migrant shares σodt = countodt∑
d countodt

. πodt is the baseline Her�ndahl

estimate, which behaves as the settlement share for the diversity instrument. I use the same growth

rates got as in the baseline shift-share strategy above. Panel B of Table 5 shows the results of the

�rst-stage, where the predicted shifts are used to produce the instrument aggregates. I �nd that the

diversity predictor is weaker than in the main shift-share, but still statistically signi�cant at the 5%

level.

Panel B of Table 6 gives the second stage regression of equation 9 using the predicted shifts. I

�nd that the labor size estimate remains remains negative and signi�cant for per-capita light density
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Table 5: First Stage Prediction of Migrant Size and Composition with Predicted Shifts and Shares

Panel A: Predicted Shifts

(1) (2)
Migrant Flows

∆ ℓ ∆ div

Predicted ∆ ℓ 0.463 -0.006
[0.034]∗∗∗ [0.003]∗∗

Predicted ∆ div 2.213 1.607
[2.629] [0.345]∗∗∗

Mean Dep. 7.88 -0.01
Observations 661 661
Fstat 93.081 12.106

Panel B: Predicted Shares

∆ ℓ ∆ div

Predicted ∆ ℓ 0.214 0.005
[0.042]∗∗∗ [0.002]∗

Predicted ∆ div -22.876 3.721
[12.033]∗ [0.901]∗∗∗

Mean Dep. 7.77 -0.01
Observations 710 710
Fstat 28.672 9.009

Note: This table estimates the �rst-stage regression of
predicted on real changes in migrant labor and compo-

sition reald,t = α∆̂ld,t + γ∆̂divd,t + υt + µc. ∆l is the
logged di�erence in total migrant labor in destination d
between census years. In Panel A, shifts are taken from
predicted changes in outmigration across birthplaces,
while shares are pre-period settlement shares from each
birthplace. Shifts are instrumented by drought events,
con�ict events and commodity price shocks. In Panel B
shifts are taken from the baseline changes in outmigra-
tion across birthplaces, while shares are predicted set-
tlement shares from each birthplace, leveraging histori-
cal productivity shocks and origin-destination distance.
Historical productivity shocks include distance to colo-
nial rail, distance to mineral deposits, and distance to
portage sites. ∆div is the di�erence in HHI between
census years for all non-native residents in location d.
Regressions include �xed e�ects for country and year. *
p<0.01, ** p<0.05, *** p<0.01.

growth. I interpret this as strong evidence that level changes in migrant labor size slow productivity

growth, even as they increase city size and extent. The estimates of diversity are noisy. This is

partially a result of a relatively weak instrument. I also consider this suggestive evidence that the

e�ects of migrant labor size outweigh the e�ects of diversity.

Across estimation strategies, I �nd evidence that increasing migrant labor size causes cities to

grow in light density, but lowers per-capita GDP growth. Increasing migrant diversity decreases city

growth, both in level and per-capita terms, but increases the non-agricultural labor share. Migrant

labor size does not have consistent e�ects on industry mix, re�ecting the importance of identifying

both level and composition parameters to understand the aggregate impacts of migration. My results

are broadly consistent with cross-sectional work that �nds limited evidence of agglomeration returns

in African cities, and negative impacts of ethnic diversity. My �ndings on the e�ects of migrant

diversity on labor allocation suggest long-run urbanization bene�ts of migrant diversity, which I

explore further in my long-run estimation strategy below.

Using a battery of shocks to birthplaces and historical characteristics of destinations, I predict

both shifts and shares. I �nd that migration shocks do successfully predict both the size and com-
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Table 6: Second-Stage E�ects of Migration on Productivity with Predicted Shifts and Shares

Panel A: Predicted Shifts

(1) (2) (3) (4)
∆ Lights ∆ Lights/Capita ∆ Non-Agriculture Share ∆ Housing Quality

∆ l 0.256 -1.387 0.012 -0.299
[0.076]∗∗∗ [0.157]∗∗∗ [0.070] [0.130]∗∗

∆ div -1.849 0.406 2.104 -2.012
[1.521] [4.300] [1.265]∗ [2.034]

Mean Dep. -0.18 2.43 0.35 0.03
Observations 661 661 465 472
Kleibergen-Paap Fstat 12.788 12.788 13.289 11.121
Sanderson-Windmeijer ℓ 71.251 71.251 43.754 43.862
Sanderson-Windmeijer div 12.810 12.810 13.497 11.174

Panel B: Predicted Shares

∆ Lights ∆ Lights/Capita ∆ Non-Agriculture Share ∆ Housing Quality

∆ l -0.283 -3.150 0.612 0.223
[0.264] [0.717]∗∗∗ [0.185]∗∗∗ [0.347]

∆ div 4.546 6.553 -1.331 0.068
[11.405] [8.927] [2.099] [2.731]

Mean Dep. -0.13 2.70 0.23 0.01
Observations 710 710 517 553
Kleibergen-Paap Fstat 9.051 9.051 10.804 4.734
Sanderson-Windmeijer ℓ 11.744 11.744 7.938 8.339
Sanderson-Windmeijer div 9.329 9.329 10.576 5.742

Note: This table presents the 2SLS estimation of changes in migrant labor and diversity on light density outcomes.
yd,t = α∆ld,t + γ∆divd,t + υtc. In Panel A, shifts are taken from predicted changes in outmigration across birth-
places, while shares are pre-period settlement shares from each birthplace. In Panel B shifts are taken from the
baseline changes in outmigration across birthplaces, while shares are predicted settlement shares from each birth-
place, leveraging historical productivity shocks and origin-destination distance. The original harmonized range of
light density is from 0 to 63. The �rst column outcome is the standardized change in average light density, while the
second column is the log change in light density per capita. The third column outcome is the change in labor share
in non-agricultural industries, and the fourth column measures changes in housing quality, measured by a principle
component of housing characteristics. All regressions include country-year �xed e�ects. Data for this table comes
from an origin-destination panel of workers in African IPUMS Census samples. All regressions include country-year
�xed e�ects. * p<0.01, ** p<0.05, *** p<0.01.

position of migrant labor. While the e�ects of labor size remain consistent, the e�ects of migrant

diversity on light density outcomes are not statistically signi�cant. I �nd consistent evidence that

migrant diversity increases non-agricultural labor share. The exercise predicting settlement shares

yields a weak �rst stage. However, I do �nd that the negative e�ects of migrant labor size on

per-capita growth rates remains consistent and statistically signi�cant.

4.4 Evidence from a Natural Experiment: Ending Apartheid

South Africa represents a particular case of internal sorting. The end of Apartheid brought a sudden

lifting of migration restrictions that had forced the black population to remain in �ethnic homelands".

These homelands, established by the Native Land Act in 1913, were loosely tied to distinct historical

tribes. Transkei, for example, was a homeland attached to the Xhosa people. While KwaZulu, around

Durban, was the homeland for the Zulu people. The Pass Laws required black South Africans to

carry internal passports to regulate their movement outside of native lands (Amodio and Chiovelli,

2018). While not all black South Africans lived in these ethnic homelands, millions are believed to

have been forcibly resettled in the homelands between 1960 and 1991 (Lochmann et al., 2023). The

Pass Laws were repealed in 1986, followed by the Native Land Act in 1991. These events amount

to a sudden reduction in migration costs for black South Africans from di�erent ethnic origins, who

could now move freely to new destinations. Leveraging municipality level data from censuses between

1991-2022, we can study the long-term labor market e�ects of this migration shock.

Figure 12 shows the distribution of African ethnic homelands during the Apartheid era in South

Africa. The panel on the right shows the distribution of language families, as measured in the

Ethnologue dataset of languages. These �gures give a sense of the correspondence between the
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Figure 12: Ethnic Homelands under Apartheid, South Africa

(a) Ethnic Homelands (b) Language Families (Ethnologue)

Notes: These �gures show the location of South Africa's ethnic homelands, where the majority of the black population were
forced to settle. The �gure on the right shows the distribution of major language families, according to the Ethnologue dataset of
languages.

homelands and particular black ethnic groups or linguistic families. The regions outlined in black

are local municipalities as of 2022. These regions will serve as our units of analysis when studying

regional outcomes after Apartheid.

Between 1986 and 1991, many of the restrictions on internal migration were lifted for black South

Africans. Using census data from 1991 - 2022, we can trace the trajectory of diversity and population

size over this period. While the South African censuses don't contain consistent information on

subnational birthplace, they do identify native language or mother tongue of respondents. Using

this language information, we can link black respondents to their ethnic homeland using the same

language-ethnic group linking procedure leveraged in the main analysis. For each destination, we

can calculate an ethnic HHI index as the relative diversity of the black population. We don't include

English or Afrikaans speakers in this index.

Figure 14 shows the change in diversity over time in destinations. The left �gure splits destinations

in terms of average distance to ethnic homelands, with the furthest quantile representing destinations

on the west coast of the country. The y-axes capture the negative Her�ndahl index of black population

diversity by native homeland, with higher values representing increased diversity. The right �gure

considers major urban destinations, and plots the change in the HHI index, rather than the levels.

I �nd heterogeneous �uctuations in black ethnic diversity across destinations. In levels, the closest

quantile of municipalities to ethnic homelands is the most diverse in terms of the black population's

ethnic mix. After the abolishment of pass laws, this group experiences a decrease in diversity, as

South Africans depart for further o� destinations. The furthest quantile of municipalities experienced

a long increase in diversity from 2001 to 2011, nearing the levels of the native homelands. Cape Town,

one of the major towns in the furtherst quantile group, saw a strong increase in diversity from 1991-

1996. This is shown in Panel B, which captures changes to the negative HHI over time. Other major

cities saw clear increases in diversity, represented as points above 0 in Panel B. Though the rates are

less dramatic in terms of proportional changes.

I replicate the baseline shift-share strategy from Table 3, applied to the South Africa case. The

shifts got are the post-Apartheid growth in migrants from origin o, as de�ned by their native language,

living outside of o. The settlement shares are the Apartheid shares of each migrant group living in

a particular municipality. One might instead think to use �distance to homeland" as an instrument

for the settlement shares. However, as seen in the trend �gures, migrants did not necessarily travel

to cities close to homelands. Many major cities like Cape Town, far from the native homelands,

experienced sharp shifts in the migrant population.

Table 7 shows the results of a second-stage shift-share. The linear e�ects of migrant labor �ows

are consistent with the headline results. Migrants increase city sizes, but migrant �ows do not

produce per-capita light density growth. However, the compositional e�ects are inverted. Increasing
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Figure 14: Black Diversity in South Africa After Apartheid

(a) Ethnic -HHI by Homeland Distance (b) ∆ Ethnic -HHI in Major Cities

Notes: These �gures show change in the homeland composition of the black population in destinations over time. The left �gure
shows the HHI score for destinations at di�erent average distances from the native lands in the eastern part of the country. The
right �gure shows the change in this HHI measure for major cities, from the end of Apartheid onward.

black migrant diversity causes larger cities and higher per-capita growth in light density. These

results show that the e�ects of migrant diversity are heterogeneous across locations. South Africa's

particular history of oppression and black-white con�ict may have taken precedence over ethnic

tensions between black ethnic groups.

5 Mechanisms

In this section I consider a few possible mechanisms for the headline result of the paper. Migrant

�ows increase city sizes but slow productivity growth. Migrant birthplace diversity causes lower city

sizes and lower productivity growth, but increases urbanization. The negative impact of diversity

is indicative of a nonlinear congestion force that dampens agglomeration bene�ts in the short-run,

but may yield positive long-run bene�ts in terms of structural transformation. The �birthplace

composition" measure, or ∆div, is a broad index of diversity. Because it is derived from workers'

di�erences in birthplaces, there could be many types of diversity captured by this measure. Diversity

in birthplace may be correlated with linguistic diversity, ethnic or religious diversity. To the extent

that di�erent origins may have di�erent skills or experiences, it also encompasses diversity of skill.

I consider a few examples of how birthplace diversity may create short-run negative externalities

through ethnic con�ict, di�culties in cooperation related to linguistic distance, or di�erences in skill

complementarity.

5.1 Ethnic Con�ict

The short-run costs of migrant diversity may be a result of urban con�ict generated between dis-

parate groups. A standard result in political economy links ethnic diversity in Africa to ethnic

con�ict (Arbatli et al., 2020) 5. Most of the evidence of this relationship comes from cross-sectional

associations of diversity measures on geolocated battle events from ACLED or UCDP.

Beyond the normal causality concerns, another challenge for this con�ict literature is understand-

ing the role of population size on con�ict. Indeed, in the cross-section population size is strongly

positively correlated with con�ict. To the extent that diversity and population move together, it's

5There are debates about the particular functional form this relationship takes, with scholars arguing for di�erent ways
to index diversity and weight relative group sizes as a metric for polarization, fractionalization, etc. The relationship
between relative group size and con�ict is not obvious. Many ethnic con�icts, like the Rwandan genocide, seem to emerge
without the need for many groups, or equally sized groups. I continue to rely on changes in a negative Her�ndahl index,
for consistency with the baseline speci�cation
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Table 7: South Africa Shift-Share Second Stage, Migrant Flows

Panel A: OLS Results

(1) (2)
∆ Lights ∆ Lights/Capita

∆ l 0.047 -0.283
[0.016]∗∗∗ [0.033]∗∗∗

∆ div 1.646 1.582
[0.301]∗∗∗ [0.662]∗∗

Mean Dep. 0.07 -0.15
Observations 798 798

Panel B: Shift-Share IV

∆ Lights ∆ Lights/Capita

∆ l 0.083 -0.215
[0.026]∗∗∗ [0.046]∗∗∗

∆ div 4.524 10.525
[1.640]∗∗∗ [3.161]∗∗∗

Mean Dep. 0.07 -0.15
Observations 798 798
Kleibergen-Paap Fstat 9.037 9.037
Sanderson-Windmeijer L 374.608 374.608
Sanderson-Windmeijer Div 22.360 22.360

Note: Panel A presents the OLS estimation of changes in mi-
grant labor and diversity on light density outcomes. yd,t =
α∆ld,t + γ∆divd,t + υtc. Panel B presents the IV 2SLS estima-
tion of changes in migrant labor and diversity on light density
outcomes. Light density is included with various speci�cations.
The original harmonized range is from 0 to 63. The �rst col-
umn gives the log level in the contemporary period, the second
is the logged di�erence across census years, the third is the non-
logged distance and the fourth divides the light density value
by the population of the administrative region in that period.
All regressions include country-year �xed e�ects. * p<0.01, **
p<0.05, *** p<0.01.

di�cult to disentangle the role that diversity plays independent of population size. If larger popula-

tion centers are naturally more diverse, increased con�ict or crime could be due to either force. The

construction of my empirical strategy is able to disentangle these e�ects.

Following the Bartik style shift-share strategy elaborated in the empirical methods section, I

study the e�ect of changes in migrant labor size and migrant diversity on con�ict outcomes. Table 8

shows the results of this analysis. Con�ict is measured as the number of battle events that occur

in a given destination-year, according to the ACLED dataset. I also weight the con�ict events by

estimated average fatalities, which is represented as �deaths" in the table columns.

Column 3 presents results for the di�erenced change in con�ict at destination, in response to

changes in migrant labor size and diversity. A 1% increase in migrant labor size adds 0.347 average

con�ict events per year. A .1 point increase in migrant diversity increases the number of con�ict

events by 0.7 per year. This is strong evidence of a congestion force that a�ects destinations as larger

and more heterogeneous migrants arrive in destinations. Ethnic con�ict may be one mechanism that

reduces light density growth in increasingly diverse destinations.

5.2 Linguistic Distance

A natural problem for migrants moving to new destinations may be learning a new language. If

migrants arriving in a destination speak many di�erent languages, these linguistic di�erences could

pose challenges for coordination in �rms, households, or neighborhoods. A mostly US literature on

assimilation of migrants suggests that closing cultural gaps is an important part of unlocking returns

to migration (Abramitzky et al., 2020). So far none our measures of diversity have tried to weight

di�erences across birthplaces in terms of cultural or linguistic distance. Two points for why its not

ex-ante obvious that cultural distance is the important mechanism driving our results: (1) This paper
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Figure 16: Con�ict and Population Size in the Cross-Section

Notes: This �gure shows the cross-sectional relationship between the number of ACLED battle-events in a region and popu-
lation size, ordered into deciles. The regions de�ned in this analysis are grid-cells of the African continent of approximately
1000km2. Population is calculated from the Worldpop estimates for 2013. The y-axis measures the average probability of
observing a con�ict event in that grid-cell in a given year between 1997 and 2025.

Table 8: Shift-Share Second Stage, Con�ict Outcomes

Panel A: OLS Results

(1) (2) (3) (4)
Con�ict Deaths ∆ Con�ict ∆ Deaths

∆ ℓ 0.410 -0.241 0.347 -0.023
[0.268] [0.296] [0.140]∗∗ [0.445]

∆ div 2.573 -3.249 7.122 1.159
[1.081]∗∗ [4.983] [2.074]∗∗∗ [3.681]

Mean Dep. 1.19 1.26 0.63 0.14
Observations 829 829 581 581

Panel B: Shift-Share IV

Con�ict Deaths ∆ Con�ict ∆ Deaths

∆ ℓ 0.719 -1.214 0.738 0.543
[0.588] [0.747] [0.257]∗∗∗ [0.882]

∆ div 4.041 -7.763 10.991 -4.733
[2.022]∗∗ [6.253] [3.349]∗∗∗ [8.157]

Mean Dep. 1.19 1.26 0.63 0.14
Observations 829 829 581 581
Kleibergen-Paap Fstat 16.462 16.462 12.030 12.030
Sanderson-Windmeijer ℓ 245.593 245.593 156.499 156.499
Sanderson-Windmeijer div 27.686 27.686 22.170 22.170

Note: Panel A presents the OLS estimation of changes in migrant labor and
diversity on con�ict at destination. yd,t = α∆ld,t + γ∆divd,t + υtc. Panel B
presents the IV 2SLS estimation of changes in migrant labor and diversity on
con�ict at destination. Outcomes include the number of ACLED battle events,
which we call �con�ict", as well as the estimated number of con�ict deaths in a
destination across years. We include these outcome both as levels and in di�er-
ences. The di�erenced terms are in raw changes in the number of con�ict events
or deaths over time. All regressions include country-year �xed e�ects. * p<0.01,
** p<0.05, *** p<0.01.

looks at internal migration. While many states have an abundance of local indigenous languages, its

also true that most states have a condensed set of national languages. Take Mozambique for example.

While the country hosts a wide variety of local languages and dialects, most people in urban centers

speak Portuguese �uently. (2) There are many examples of con�ict or animosity between groups

that are on paper culturally similar (Posner, 2004). Di�erences in groups over space are often the

result of historical, geographical and political factors that may arise even when groups speak the
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same language.

To consider the role of linguistic distance, I match each administrative region to its majority

spoken language, as according to the Ethnologue, a large geographically coded dataset of world

languages. A useful feature of the Ethnologue is that each language is coded within a nested tree of

language families and sub-families. Oko, for example, is a Nigerian language spoken in Edo state and

part of the Niger-Congo family. Within the Niger-Congo linguistic family, its part of the Volta-Niger

linguistic subgroup. Between any two languages, we can then create a simple measure of linguistic

distance based on how many linguistic families and sub-families they have in common. Oko is related

to Ibo, another Volta-Niger language, but distant from the northern Nigerian Hausa, an Afro-Asiatic

family language.

For each migrant from an origin o in destination d, I calculate the linguistic distance between the

majority language in that given origin and destination pair. Weighting by the total migrants from

each origin into a destination d, I calculate an average linguistic distance index that measures the

average cultural distance between migrants and destination natives. Table 9 presents results from an

OLS regression in �rst di�erences, relating destination productivity to changes in migrant labor size

and changes in the average linguistic distance of migrants. As above, these di�erences are calculated

across census periods. I �nd that increasing linguistic distance is only weakly related to changes in

light density, but strongly related to an increasing share of non-agricultural labor.

Is increasing linguistic distance captured up by the diversity shift-share instrument used in the

analysis? In Table 10, I regress the measure of average linguistic distance against my �rst-stage

predictors from Table 2. In levels, higher ethnic concentration is in fact associated with a lower

level of linguistic distance. However, in di�erences I �nd the opposite of the expected relationship.

Increasing diversity of birthplace composition predicts decreases in average linguistic distance. That

is, our predictor of changes in birthplace diversity does not simultenously predict changes in linguistic

distance. Therefore, while we do observe an association between changes in linguistic distance and

higher agricultural labor share, my shift-share strategy does not directly map to a levels change in

average linguistic distance.

Table 9: Change in Linguistic Distance and Productivity

OLS Results

(1) (2) (3) (4)
∆ Lights ∆ Log(Lights/Capita) ∆ Non-Agriculture Share ∆ Housing Quality

∆ ℓ 0.217 -0.779 -0.027 0.027
[0.049]∗∗∗ [0.077]∗∗∗ [0.016]∗ [0.036]

∆ Linguistic Distance -2.812 3.582 4.600 1.701
[1.442]∗ [5.019] [1.505]∗∗∗ [2.344]

Mean Dep. 0.01 3.32 0.13 0.03
Observations 881 881 685 722

Note: This table presents the OLS estimation of changes in migrant labor and average linguistic distance on productivity
at destination. Average linguistic distance is calculated as the inverse of the similarity between a migrant's language and
the majority language at destination, weighted by �ow size across all migrant groups. Similarity is de�ned according to
Ethnologue linguistic families. This measure is then di�erenced across census periods. All regressions include country-
year �xed e�ects. Clustering is at the second administrative level. * p<0.01, ** p<0.05, *** p<0.01.

5.3 Skill-Level, Segregation and Industry Concentration

The changes in migration discussed in this paper are in terms of the number of people over 18 that

have settled in a destination. While the empirical model is in di�erences, its possible that the e�ects

are being partially driven by di�erential trends in the human capital of the migrants arriving in

destination. Changes in migrant diversity may be related to changes in the average skill level of

the workforce. Another possible channel is through other features of the labor market. If migrants

arriving in destinations bring many diverse skills, they may reduce the industrial concentration of

cities and in-turn diversify production at destination. Lower industry concentration may be a channel
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Table 10: First Stage Relationship of div and Linguistic Distance

First Stage Correlation

Linguistic Distance ∆ Linguistic Distance

Predicted ∆ l 0.015 -0.002
[0.001]∗∗∗ [0.000]∗∗∗

Predicted ∆ div 0.094 -0.027
[0.022]∗∗∗ [0.010]∗∗∗

Mean Dep. -0.00 -0.00
Observations 944 944

Note: This table presents a �rst-stage regression relating the pre-
dicted migrant labor and predicted diversity change estimates from
our shift-share design to average changes in linguistic distance at the
destination. Average linguistic distance is calculated as the inverse
of the similarity between a migrant's language and the majority lan-
guage at destination, weighted by �ow size across all migrant groups.
Similarity is de�ned according to Ethnologue linguistic families. The
�rst column outcome is the average linguistic distance of migrants
to destination natives, weighted by the group size of migrants. The
second column outcome is this measure di�erenced across census
periods. All regressions include country-year �xed e�ects. Cluster-
ing is at the second administrative level. * p<0.01, ** p<0.05, ***
p<0.01.

through which migrant diversity creates long-run structural transformation.

To study these mechanisms, I consider the impact of instrumented migrant levels and composition

on changes to average worker skill level, industry concentration and industry segregation. Industry

concentration is measured as the HHI of industry labor-share across industries within a region.

Industry segregation is a measure of the extent to which migrants from di�erent origins sort into

particular industries. The measure captures the extent to which industry labor shares for a given

migrant birthplace deviate the population average in that region (?). For a given migrant origin

group o ∈ O living in destination d and working in industry i ∈ I, segregation is de�ned as:

Segregationd =
1

O − 1

O∑
o=1

I∑
i=1

No

Nd

(πio − πod)
2

πod
(21)

Where πod is the fraction of group o in destination d, and πio is the fraction of group o in industry

i of destination d. No is the total population of group o in destination d and Nd is the total population

in destination d. Higher values of this segregation index correspond to greater segregation of ethnic

groups across industries within a destination.

Table B4 presents the OLS and SSIV results for changes in average worker skill level, industry

concentration, and industry segregation by birthplace. The model is the same baseline shift-share

examined in Table 3. I �nd that both increasing migrant labor size and diversity lowers indus-

try concentration, as measured by an HHI of labor-shares. This suggests that migrant �ows and

composition introduce increase diversity to the industrial mix of a destination. I also �nd evidence

that increasing migrant labor size reduces average worker skill level. This is a possible mechanism

by which increasing migrant labor size does not translate to higher per-capita productivity growth.

Low skilled migrants bring down the average skill level of workers, compete for low-skilled wages,

but may not geneate the ideas, businesses and networks necessary to create agglomeration bene�ts.

I �nd no evidence that increasing migrant diversity a�ects the average skill level of workers or the

segregation of groups across industries. While increasing migrant diversity does introduce diversity

to the industry mix, we don't see evidence that particular migrants specialize within certain indus-

tries. The industry categories are broad, therefore its possible that given more granular occupational

categories di�erent specialization patterns would emerge.
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5.4 Productivity Evidence from Firms

Past work has suggested that ethnic divisions within �rms can lower productivity in team-based

production (Hjort, 2014). This suggests a mechanism via poor coordination or discrimination within

�rms, rather than outright con�ict. In this section, I consider evidence on changes in diversity

within �rms, and the subsequent impact on productivity. An ideal microeconomic dataset to study

the role of migrants in productivity would include �rm-level information on input-output, as well

as detailed characteristics of the �rm's labor force. While some enterprise level surveys exist for

African countries, few provide information on workers, including ethnic identity or birthplace. Two

exceptions come from the �Regional Programme on Enterprise Development (RPED)", led by the

World Bank in collaboration with the Centre for the Study of African Economies (CSAE). In the

90s and early 2000s a panel of manufacturing �rms was collected for Ghana and Tanzania which, for

some waves, include data on the ethnic composition from a sample of workers.

These panels were collected between 1992 and 2003, recording basic characteristics of the �rm

such as wages and labor size. In addition, a worker supplement is collected for each �rm in which

up to 10 workers are interviewed and asked about their experience and background. I leverage

this data to examine associations between �rm-level productivity, number of workers and worker

ethnic concentration. Table 11 shows the results of �rm-level regressions of productivity measures

on �rm labor size and worker ethnic concentration. Outcomes include log wages per worker, and

log manufacturing output value per worker. Columns 1 and 3 include �xed e�ects for country and

year, while columns 2 and 4 look at within-�rm variation over time using �rm �xed e�ects. I �nd

some evidence that in the cross-section, �rm productivity is increasing in labor size and decreasing

in ethnic concentration. This is the opposite association of what we'd expect to see if ethnic diversity

hinders �rm productivity. Looking within �rms over time, we see evidence that �rms are becoming

less productive as they grow in size, with no evidence of an e�ect by changing ethnic HHI.

These samples are small, and the analysis is not causal. However we don't see evidence of an

ethnic diversity penalty within or across �rms that has been posited by microeconomic papers.

Table 11: Ethnicity and Firm Productivity in Ghana, Tanzania

Log(Wages/Worker) Log(Wages/Worker) Log(Output/Worker) Log(Output/Worker)

Log(labor) 0.299 -0.903 0.361 -1.326
[0.053]∗∗∗ [0.136]∗∗∗ [0.104]∗∗∗ [0.511]∗∗

Ethnic HHI -1.067 0.126 -0.457 0.868
[0.269]∗∗∗ [0.224] [0.530] [0.843]

Mean Dep. 15.19 15.78 12.82 13.44
Observations 511 332 496 330
Country FE Y N Y N
Wave FE Y N Y N
Firm FE N Y N Y

Notes: This table shows the result of a regression of log wages or output per worker on �rm size and worker ethnic
concentration log( y

ℓ )ist = β1ℓ + β2HHI + ϵist. Where i is �rm, s country, and t is survey wave. The �rst column
in each pair includes country and survey wave �xed e�ects, while the second includes �rm �xed e�ects. Output
represents the total monetary value of manufacturing output, while wages re�ect the total wage bill. Each regression
also controls for the number of workers that data was collected on for the HHI variable, up to 10 workers. * p<0.01,
** p<0.05, *** p<0.01.

5.5 Migration and Ethnic Attitudes

Are migrants more or less prone to ethnic con�ict relative to natives or non-migrants? It may be

that the act of migrating itself is associated with increasing or decreasing tribalism among ethnic

groups. For example, a migrant from a minority group may choose to move to a city, and begin

to experience economic disenfranchisement or discrimination. In turn, the migrant becomes more

allied with their ethnic group, and deepens their coethnic preference. The inverse of this process is

also possible. Work with panel data in Kenya has shown reduced tribalism and increasing national

identity in individuals after they migrate to cities (Kramon et al., 2022). This suggests that urban
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centers play a di�using role in ethnic tensions. Using Afrobarometer data, I explore observational

di�erences between migrants and non-migrants in terms of their reported national identity and future

economic expectations. I use the same model of observational returns leveraged in Table 1. I replace

our outcome of interest with a measure of ethnic allegiance or economic disenfranchisement:

Attitudesit = β1Migranti + β2Migranti ·Distod

+ β3Migranti · CoethShareod + Zi +Xod +Wd + υst + γo + ϵit (22)

Where Distod is the log distance between the ethnic homeland and the destination, Migranti is

a dummy for migrant status, and CoethShareod re�ects the fraction of individuals in d that are from

ethnic homeland o. We include �xed e�ects for country-year υst, and γo to isolate variation within

an ethnic group. The controls for the individual Zi include age and schooling, while Xod includes

the level of o-d distance and coethnic share, and Wd includes destination log population. Attitudesit

is a measure of ethnic or economic attitudes, �Nationalism" or �Expectations". National identity,

or �nationalism" is an individual's response to a question about how much the individual identi�es

with the nation relative to their ethnic group. We use it here as a measure of ethnic allegiance.

Future expectations is a question styled after the Michigan Consumer Con�dence Survey, which asks

individuals if they expect economic conditions to improve in the next year. We use this question as

a measure of economic disenchantment or distress. Table B5 shows these results, with no signi�cant

di�erences between migrants and natives in terms of national identity or economic expectations.

6 Urban Growth and Diversity in the Long-Run

The analysis in this paper has focused on decade level changes in migrant labor size, composition

and productivity. The positive e�ects of migrant diversity on non-agricultural labor share suggests

that migrant diversity may a�ect fundamental characteristics of the economy at destination. It

may be that the bene�ts of such e�ects manifest over longer time horizons. The problem with

studying longer-run e�ects of labor size and diversity on growth is a lack of data. Most early African

censuses, where they exist, don't include ethnic or birthplace identi�ers. In addition, few measures

of subnational productivity exist in earlier periods.

In this section I leverage the historical pull shocks constructed for the shift-share instrument to

estimate a long-run e�ect of labor size and diversity on urban development. The historical produc-

tivity shocks, including colonial rail lines, portage sites and mineral deposits serve as agglomeration

instruments, which can be used to predict contemporary city locations. The empirical strategy takes

inspiration from the literature on estimating labor demand curves from shocks to labor demand (Di-

amond, 2016; Notowidigdo, 2020) and housing supply elasticities (Saiz, 2010; Guedes et al., 2023).

In this work inverse demand and supply elasticities are estimated using an interaction between a

labor demand shock and a housing supply constraint.

I start from the following equation. For each region i, the long-term relationship between diversity,

population and productivity is described as:

yi = β0 + β1ℓi + β2divi +Xi + ϵi (23)

where ℓi and divi capture a destination's size and diversity in the long-run, and Xi is a vector

of geographic controls. This cross-sectional regression is similar to the associations estimated by

Montalvo and Reynal-Querol (2021). What I add to this framework is a causal inference strategy.

Since there is no long-run panel data on diversity divi over time, I use a historic fractionalization index

that captures each region's exposure to historical ethnic groups de�ned by anthropological maps. I

use the Murdock Map, and de�ne each region's historical diversity exposure as the distribution of

land occupied by di�erent ethnic homelands. A region's contemporary diversity is proxied by the
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interaction of this historical exposure to di�erent groups, and historical labor demand. Intuitively,

areas become more diverse as labor demand shocks compel them to draw in labor from surrounding

areas. The more inherently diverse this potential pool of labor (due to the historic spatial distribution

of groups), the more diverse the city will be. Substituting historic diversity HistDivi for divi, I

estimate:

yi = β0 + β1ℓi + β3HistDivi + β4HistDivi ∗ ℓi +Xi + ϵi (24)

where HistDivi captures a region's potential exposure to diverse migrants based on the Murdock

Map, and ℓi captures a measure of employment density. The interaction of fractionalization and

labor is the variable of interest. The interaction captures how historic fractionalization a�ects the

labor demand elasticity, and in turn output and productivity. HistDiv represents a �xed regional

quality, and β4 represents an elasticity of urban growth with respect to this quality.

Population density is an endogenous variable. In addition, HistDivi by itself will be related to a

variety of geographic fundamentals that governed the distribution of groups over space (Michalopou-

los, 2012). Our IV strategy will predict population density and its interaction by exploiting temporary

shocks to regional productivity ∆Ai that drove labor demand historically, but that are no longer

correlated with unobserved productivity fundamentals today. I use these historic productivity shocks

as agglomeration instruments, and predict both labor size ℓ̂ and the interaction of labor size and

diversity ̂ℓ ∗HistDiv:

ℓ̂i = α+ β1∆Ai + β2∆Ai ∗HistDivi + ωs + ϵi (25)

̂ℓi ∗HistDivi = α+ β1∆Ai + β2∆Ai ∗HistDivi + ωs + ϵi (26)

∆Ai represents one of the three historical pull shocks, either distance to colonial rail, distance to

portage site, or distance to a mineral deposit. ωs are state �xed e�ects. Using these regressions as

two �rst-stages, I will then estimate the second stage e�ect on contemporary development outcomes

for each region in the cross-section. The exclusion restriction requires that a historical productivity

shock ∆Ai is uncorrelated with unobserved other factors in ϵi that drive outcomes of light density,

wealth, lights/capita,and con�ict in the contemporary period. Note we do not need that HistDivi

is uncorrelated with ∆Ai in this estimation.

I split the African continent into equally sized hexagonal grids of approximately 1000km2, which

I use as my regions i. For each grid I aggregate data on con�ict, light density, population across years

and the geographic variables including malaria suitability, ruggedness and soil suitability. Figure 17

shows an example of how the Murdock Map is used to calculate a historical diversity index for each

region. This is a fractionalization index of the relative share of each grid taken up by a particular

Murdock group. Higher values imply more diversity.

I use a dummy for labor size ℓ that marks regions as cities (or high density) if they overlap with

a city of over 20k inhabitants in 2015, as de�ned by the urban database Africapolis. Table B6 shows

the results of OLS regressions for di�erent development outcomes y following equation 24. Panel A

shows results using a city dummy for ℓ, while panel B uses an interpolated population measure at

the grid level, taken from the Worldpop dataset. Urban agglomerations have higher light density,

and higher con�ict. Due to the high relative population size, per capita measures in these regressions

are negative relative to less populated regions. In the cross-section, I �nd that cities located in more

diverse areas have a higher lights/capita value, but also higher incidence of con�ict as measured by

a summation of ACLED con�ict events.

Table 12 shows results for our three instrumental variable strategies following the historical pull

characteristics described in the Empirical Strategy section. I �nd that across strategies, high diversity

places that receive a productivity shock have higher values of our preferred development measure,

lights/capita. The baseline negative coe�cient on diversity is in line with the correlations studied

in past political economy work on the relationship of diversity and development. While baseline

diversity has a negative coe�cient, the elasticity of urban growth with respect to diversity is positive,
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Figure 17: Data Examples from Nigeria

(a) Murdock Map (b) Grid Fractionalization

Notes: This �gure shows examples of the grid-level data constructed from a historical map of diversity. Fractionalization is
calculated as the dispersion in the share of each grid taken up by di�erent ethnic homelands.

suggesting that in the long-run diversity of ethnic groups can be a boon for urban growth.

7 Conclusion

This paper disentangles the e�ects of migration levels and composition on urban African productivity.

I build a panel that proxies for origin-destination migration �ows using census data on reported

birthplace and ethnicity. Then I implement a shift-share instrument that simultaneously identi�es the

linear change in migration labor size and nonlinear birthplace composition. I �nd that destinations

that receive more migration labor grow in light density, but are not more productive in per-capita

terms. This is consistent with a story of growing African cities with limited productivity returns

or urban structural transformation (Jedwab et al., 2025). Migrants that are more diverse cause

lower growth in levels and per-capita terms. However, increasing migrant diversity also yields higher

non-agricultural labor force shares in destinations. Migrant diversity creates short-run costs, but

seems to generate long-run bene�ts to destinations in terms of urbanization. The results are broadly

consist when I instrument for shifts using plausibly exogenous push shocks to outmigration, including

international commodity prices, con�ict events and drought conditions. In zero stage regressions,

I �nd evidence that these channels move outmigration from origins, and have predictable e�ects

on migrant labor size and composition. This fact has implications for how we study the impact

of migration shocks, as the spatial dispersion of shocks changes both the size and composition of

migrants.

I explore several mechanisms to better understand the e�ect of migrant labor size and diversity on

destinations. I �nd evidence that increased migrant diversity and migrant labor size increase urban

con�ict. I don't �nd evidence that diversity hurts productivity at the �rm level in a panel of �rms.

The mixed results for diversity across di�erent outcomes lead me to pursue two further exercises. In

a study of the Apartheid period of South Africa, I leverage the repeal of the Pass Laws as a migration

shock event that generates high outmigration shifts from native homelands. Measuring the size and

composition of the black migrant labor force and estimating the same baseline shift-share yields an

inverted e�ect of diversity. Productivity of South African municipalities is increasing in birthplace

diversity, suggesting that South African cities bene�t from the diversity of the black population.

The particular history of South Africa's con�ict between the black and white populations may have

di�used tensions across di�erent black African ethnic groups.

Lastly, I consider the long-run e�ects of diversity. I leverage my pull characteristics as �agglomer-

ation predictors", which forecast optimal locations for long-run urban growth. By interacting these

predictors with historical measures of diversity from anthropological maps, I estimate an elasticity

37



of regional diversity with respect to these historical productivity shocks. I �nd that in a long-run

cross-section, diverse areas that experienced a historical productivity shock fared better than less di-

verse areas who experienced comparable shocks. This pattern is consistent across di�erent historical

pull characteristics. I conclude that migrant labor diversity is a long-term boon for African cities,

and and may outweigh congestion costs over time.
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Table 12: 2SLS of Historical Diversity and Productivity Instruments

Panel A: Colonial Rail

(1) (2) (3) (4)
Light Density Lights/Capita Growth Lights/Capita Con�ict

City 4.537 -2.447 0.294 34.455
[0.209]∗∗∗ [0.254]∗∗∗ [0.257] [10.677]∗∗∗

Diversity 0.154 -0.713 0.116 21.367
[0.127] [0.155]∗∗∗ [0.157] [6.509]∗∗∗

City*Diversity -1.265 3.300 0.265 -136.214
[0.910] [1.106]∗∗∗ [1.121] [46.520]∗∗∗

Mean Dep. -1.92 -10.90 -1.71 8.50
Observations 16,322 16,321 16,321 16,322
Cragg-Donald F-Stat 179.838 179.830 179.830 179.838
Sanderson-Windmeijer City 201.228 201.276 201.276 201.228
Sanderson-Windmeijer City*Div 186.097 186.088 186.088 186.097

Panel B: Mineral Deposit

Light Density Lights/Capita Growth Lights/Capita Con�ict

City 7.526 -1.325 0.538 105.514
[0.271]∗∗∗ [0.271]∗∗∗ [0.340] [13.407]∗∗∗

Diversity 0.212 -1.058 -0.002 16.038
[0.148] [0.148]∗∗∗ [0.186] [7.319]∗∗

City*Diversity -2.012 3.390 0.359 -116.340
[1.008]∗∗ [1.009]∗∗∗ [1.268] [49.963]∗∗

Mean Dep. -1.78 -9.88 -1.80 8.07
Observations 22,682 22,680 22,680 22,682
Cragg-Donald F-Stat 306.111 306.087 306.087 306.111
Sanderson-Windmeijer City 318.667 318.634 318.634 318.667
Sanderson-Windmeijer City*Div 421.934 421.894 421.894 421.934

Panel C: Portage Propensity

Light Density Lights/Capita Growth Lights/Capita Con�ict

City -1.424 -25.776 -24.468 -11.948
[1.350] [7.386]∗∗∗ [7.549]∗∗∗ [90.547]

Diversity 0.539 -2.138 -0.102 1.241
[0.154]∗∗∗ [0.845]∗∗ [0.863] [10.345]

City*Diversity -5.528 15.076 1.820 24.295
[1.478]∗∗∗ [8.097]∗ [8.276] [99.161]

Mean Dep. -1.97 -9.34 -1.76 6.89
Observations 32,933 32,931 32,931 32,933
Cragg-Donald F-Stat 5.441 5.451 5.451 5.441
Sanderson-Windmeijer City 5.897 5.908 5.908 5.897
Sanderson-Windmeijer City*Div 91.601 91.596 91.596 91.601

Notes: This table presents cross-sectional regressions of instrumented urban growth and the interaction of
instrumented urban growth and historical diversity on contemporary productivity outcomes. All regressions
include state �xed e�ects. Light density outcomes are calculated in 2013, for comparison to Montalvo and
Reynal-Querol (2021). Column 1 measures log light density, column 2 is a log measure of light density over a
Worldpop estimated population for the grid in 2010, column 3 measures the change in log lights/capita from
1992 to 2013. Column 4 measures the number of con�ict events in the grid since 1997, measured in ACLED
battle events. �City" is an indicator marked as 1 if an Africapolis city is located within the grid and the
population is above 20,000. �Diversity" is a historical measure of diversity calculated as the fractionalization
of land share of di�erent Murdock ethnic groups in the grid cell. All regressions control for distance to coast,
malaria and TseTse suitability, ruggedness, distance to a major river, agricultural land productivity and a
historical estimate of population size in 1800. * p<0.01, ** p<0.05, *** p<0.01.
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A Simulations of Shift-Share Instruments with Nonlin-

earity

In this section, I run a simulation of the instrumental variable strategy to observe how the double

instrumenting procedure performs when the true coe�cients for labor size and diversity are known.

The set-up of the simulation is as follows. Suppose there are 500 regions, sourcing population from

50 homelands or origins. Each destination d receives a �ow of migrants from homeland o, according

to:

Xod = α1Zod + α2Ud + θVd + ψW ∗ Vd + ϵod (27)

Where Zod is an exogenous component of origin �ows that is normally distributed, but origins

vary in size and volatility Zod ∼ N(10 ∗ o, 3 ∗ o). As o is assigned numerical values 1 to 50, higher

values have higher means and standard deviations. Ud is an unobserved omitted variable that is

speci�c to a given region, Ud ∼ N(10, 5), and epsilon is ϵod ∼ N(0, 1). We can think of Ud as a

bias that captures the universal "attractiveness" of particular regions for people migrating from any

homeland. In addition, I include two parameters that govern the relationship between total labor

and total diversity in region d. Vd is distributed normally Vd ∼ N(0, 1), and W is a weighting vector

that assigns 1 to the �rst homeland, and 0 to the rest, creating a skew in �ows towards homeland 1.

The strenght of these forces are governed by θ and ψ parameters. The relative strength of Zod and

the unobserved variable Ud are governed by α1 and α2.

Given these numbers, the real labor supply and diversity for a destination city d can be calculated

as:

Ld =

O∑
o

Xod (28)

As before, diversity is calculated as the her�ndahl index (HHI), which is a nonlinear function of

Xod.

Divd =

O∑
o

(
Xod

Ld

)2

(29)

These aggregate components map into a city-level outcome Yd following:

Yd = β1log(Ld) + β2log(Divd) + β3log(Ud) + ϵod (30)

Each of these aggregates will introduce bias into the second stage equation via the unobserved

feature or "attractiveness" of destinations d captured by Ud and Vd. Using 2SLS I predict Ld and

Divd using just the Zod components, which are used for instruments in a zero stage as follows:

X̂od = α3Zod + ϵod (31)

Using the predicted X̂od from this equation, I then instrument for the aggregates Ld and Divd

by replacing the real Xod �ows with the predicted values. Figure A1 shows the results comparing

OLS and SSIV beta coe�cients in a model with 500 regions, 50 homelands, and a true β1 of 5, and

a true β2 of -1. I also set α1 and α2 to 0.5, which sets the strength of the instrument Zd relative to

bias Ud. The correlation between Ld and Divd is contorlled by parameters θ = 1, ψ = 2.

Using two instruments requires that the instruments should not be linearly correlated with each

other. In practice, Ld and Divd may be correlated, as more attractive destinations also draw in a

wider array of migrant groups. To explore how the beta estimator changes as the relationship between

the instruments becomes stronger, I alter the model to create variation in the amount of correlation

between Ld and Divd. I draw θ and ψ from a gamma distribution such that θ ∼ Gamma(60, 10) and

ψ ∼ Gamma(200, 50). I also alter the weighting vector such that W is [1, 2, 5, 0, 0, 0...]. Figure A2

shows the distribution of beta coe�cients for the SSIV model of the diversity variable. The boxplots
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Figure A1: Simulation of OLS and SSIV with Ommitted Variable Bias

Notes: This �gure shows the distribution of beta coe�cients for migrant labor size Ld and migrant diversity Divd, using both
SSIV and OLS. The simulation is run 500 times, and the dotted lines show the real values for the beta coe�cients, which
are 5 for labor and -1 for diversity. The OLS model regresses Yd = β1log(Ld) + β2log(Divd), while the SSIV uses aggregates
calculated from predicted Xod �ows. 500 destinations and 50 origins are included. The parameters used are α1 = α2 = 0.5,
θ = 1, ψ = 2. The weighting vector W is [1, 0, 0...].

are separated into quantiles of the absolute value of the correlation between Ld and Divd. As the

correlation between the two aggregate variables moves towards 1 the accuracy of the SSIV estimator

is reduced. Figure A3 shows the same result for the labor beta coe�cient. Figre A4 plots how the

F-statistic for the diversity instrument declines as the correlation between Ld and Divd increases.

Moving the linear correlation between the instruments from 0.5 to 0.7 reduces the F-statistic by

nearly half.
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Figure A2: SSIV Diversity Beta Coe�cients with Varying Instrument Correlation

Notes: This �gure shows the distribution of beta coe�cients for migrant diversity Divd, using SSIV as the correlation between
the linear and nonlinear instrument varies. Box plots are grouped by quantiles of the absolute correlation coe�cient between
Ld and Divd. The average of the absolute value of the correlation coe�cient is shown on the x-axis. The simulation is run
500 times, and the dotted lines show the real values for the beta coe�cient. The SSIV model regresses Yd = β1log(Ld) +
β2log(Divd), where the aggregates calculated from predicted Xod �ows. 500 destinations and 50 origins are included. The
parameters used are α1 = α2 = 0.5. The correlation between Ld and Divd is governed by θ ∼ Gamma(60, 10) and ψ ∼
Gamma(200, 50). The weighting vector W is [1, 2, 5, 0, 0, 0...].
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Figure A3: SSIV Labor Beta Coe�cients with Varying Instrument Correlation

Notes: This �gure shows the distribution of beta coe�cients for migrant labor size Ld, using SSIV as the correlation between the
linear and nonlinear instrument varies. Box plots are grouped by quantiles of the absolute correlation coe�cient between Ld and
Divd. The average of the absolute value of the correlation coe�cient is shown on the x-axis. The simulation is run 500 times,
and the dotted lines show the real values for the beta coe�cient. The SSIV model regresses Yd = β1log(Ld) + β2log(Divd),
where the aggregates calculated from predicted Xod �ows. 500 destinations and 50 origins are included. The parameters used
are α1 = α2 = 0.5. The correlation between Ld and Divd is governed by θ ∼ Gamma(60, 10) and ψ ∼ Gamma(200, 50). The
weighting vector W is [1, 2, 5, 0, 0, 0...].
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Figure A4: F-Statistic by Varying Instrument Correlation

Notes: This �gure shows the distribution of F-statistics for the instrument of migrant diversity Divd, using SSIV as the
correlation between the linear and nonlinear instrument varies. Box plots are grouped by quantiles of the absolute correlation
coe�cient between Ld and Divd. The average of the absolute value of the correlation coe�cient is shown on the x-axis. The
simulation is run 500 times, and the dotted lines show the real values for the beta coe�cient. The SSIV model regresses
Yd = β1log(Ld)+β2log(Divd), where the aggregates calculated from predicted Xod �ows. 500 destinations and 50 origins are
included. The parameters used are α1 = α2 = 0.5. The correlation between Ld and Divd is governed by θ ∼ Gamma(60, 10)
and ψ ∼ Gamma(200, 50). The weighting vector W is [1, 2, 5, 0, 0, 0...].
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B Additional Tables & Figures

B.1 Supplementary Analysis

The following section presents additional tables and �gures that are referenced in the text.

B.2 Birthplace-Level Tests Following Borusyak et al. (2022)

In this section, I conduct the robustness checks of the shift-share model suggested in Borusyak et al.

(2022). The authors recommend estimating an IV coe�cient from a birthplace-level regression, relat-

ing exposure-weighted outcome residuals on exposure-weighted treatment residuals. The procedure

accounts for a single instrument model, so I proceed by estimating a labor-only version of the model.

The purpose of this exercise is to analyze the identifying shock-level variation, so while the coe�-

cients do not match our headline estimates due to the exclusion of the diversity parameter, they are

informative about our shocks got.

When generating the birthplace level data, I consider the standardized change in migrant labor

size as the treatment, while the shocks are the growth rates at the birthplace level got, and the

instrument Z is the predicted labor change according to the shift-share. I �rst plot our residualized

average treatment residual across destinations against the birthplace growth shocks in a binned

scatterplot. Figure B1 shows a strong �rst stage relationship between the growth shocks and the

average treatment residual. Next I plot the average outcome residual against the same binned

birthplace shocks. These �gures, by outcome, are shown in Figure B3. Again, I see a clear positive

relationship, as higher level shocks relate to higher residualized outcomes. The bene�t of these

scatterplots is that we can visualize the distribution of the treatment e�ect across the distribution

of birthplace growth shocks. We see evidence of nonlinearity, with paritcularly high growth shocks

driving a disproportional amount of the variation in our treatment.

Next we calculate adjusted standard errors, as recommended in Borusyak et al. (2022), which are

standard errors in a birth-place IV regression of outcome on treatment, weighted by exposure shares.

Figure B5 plots the normal clustered robust standard errors from the IV regression, along with the

adjusted standard errors. The gray bars represent con�dence intervals. As expected, the standard

errors are higher in the adjusted version, but the coe�cients remain signi�cant.

The last use of the birthplace-level dataset is to test correlations between the shocks and baseline

characteristics of destinations, weighted by exposure. Our exclusion restriction requires that there is

no signi�cant correlated between pre-period characteristics and the birthplace shocks. To test this, we

regress a set of baseline characteristics, averaged across destinations and weighted by exposure shares,

Table B1: African Censuses with Geolocation, Birthplace or Ethnicity

Country Available Census
(ADM2)

Birthplace Ethnicity Mother Tongue

Benin 1979 1992 2002 2013 1979 1992 2002 2013 1979 1992 2002 2013 2013
Botswana 1991 2001 2011
Burkina Faso 1985 1996 2006 1985 1996 2006 2006
Cameroon 1976 1987 2005 1976 1987 2005
Côte d'Ivoire 1988 1998 1988 1998 1988 1998
Ethiopia 1984 1994 2007 1994 2007
Guinea 1983 1996 2014 1983 1996 2014
Ghana 1984 2000 2010 2000 2010
Kenya 1969 1979 1989 1999

2009 2019
1969 1979 1989 1999
2009 2019

Malawi 1987 1998 2008 2018 2008 2018
Mali 1987 1998 2009 1987 1998 2009 1987 1998 2009
Mozambique 1997 2007 2017 1997 2007 2017 2007 2017
Rwanda 1991 2002 2012 2002 2012
Senegal 1988 2002 2013 1988 2002 2013 1988 2002 2013
Sierra Leone 2004 2015 2004 2015 2004 2015 2004 2015
South Africa 1996 2001 2011 2016 1996 2001 2011 2016
Tanzania 1988 2002 2012 1988 2002 2012
Togo 1960 1970 2010 1960 1970 2010
Uganda 1991 2002 2014 1991 2002 2014 1991 2002 2014
Zambia 1990 2000 2010 1990 2000 2010 1990 2000 2010
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Table B2: Gravity Regressions of Migrant Flow using Proxy O-D Panels

N N N

ln(distance) -1.359 0.163 0.312
[0.017]∗∗∗ [0.093]∗ [0.070]∗∗∗

ln(distance2) -0.155 -0.144
[0.009]∗∗∗ [0.007]∗∗∗

Coethnic Share 8.634
[0.511]∗∗∗

Mean Dep. Var 65.753 65.753 65.753
Observations 83,661 83,661 83,661
Destination FE Y Y Y
Origin FE Y Y Y
Year FE Y Y Y

Notes: This table shows results from a gravity regression πodt =

exp
(
µdt + γot + β1CoethShareodt + β2Distod + β3Homeod

)
+

ϵodt. Where πodt is an estimated probability de�ned as the frac-
tion of individuals from o that appear in destination d at time t.

That is, πodt =
Modt
Lot

where odt is the number of people from o

in d. The regression includes destination-year and origin-year �xed
e�ects, µdt and γot respectively. Regressions are estimated using
Poisson pseudo-likelihood (PPML). Distance is calculated as the log
kilometer distance between the centroids of origin and destination
administrative regions.

against the birthplace-level shocks. The characteristics include pre-period light density measured in

1993, as well as geographic characteristics including soil suitability, TseTse �y suitability, and malaria

suitability. The data sources for these variables are enumerated in the data section of the paper.

Figure B7 plots the beta coe�cients from this regression, run separately for each outcome of interest

related to light density.

B.3 Robustness Checks

In this section we present a series of �gures that show robustness for our main shift-share speci�cation.

We perform a variety of robustness checks for our results. Figure B9 and Figure B10 show robustness

to Conley spatial standard errors across a variety of distance bandwidths. Figure B11 and B12 show

how our estimates vary when dropping individual countries from the sample. Last we simulate a

series of random outmigration shocks and apply them in our shift-share design. Figures B13 and

B14 show how the IV results appear in response to placebo shocks.

B.4 Pass-through of International Commodity Prices

Our push shock instrument leverages origin-speci�c shocks to predict outmigration rates. These

predicted outmigration shifts are then used as an instrument to estimate the impact of migration on

destination outcomes. We might be concerned that these push shocks are not only correlated across

space, but also a�ect productivity in destinations through other channels. For instance, if a price

shock hits an origin area and a�ects the trade of crops to a port destination, this may be realized

in light or wealth growth measures, unrelated to the price shock e�ects on migration. International

price shocks may also drive up the cost of food in destination areas, changing wealth and labor supply

in destination unrelated to the migration channel.

In this section, we study the impact of plausibly exogenous push shocks on local price behavior

in order to test how shocks may create di�erences in the relative attractiveness of urban and rural

locations. In particular we estiamte impulse response functions from local projections that show the

impact of international price changes on local urban/rural price dispersion. If international price

shocks create wedges in urban/rural prices for a�ected commodities, this may be evidence of direct

e�ects on destinations and a violation of the exclusion restriction.

Our data on local prices is gathered at the crop-month level from the Famine Early Warning

system (FEWS NET) and World Food Program (VAM) (Porteous, 2019). These datasets provide

crop-month price observations at a set of geolocated markets acrosss African countries. We code
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Table B3: Census Birthplace Shift-Share Second Stage, Migrant Flows

Panel A: OLS Results

Log(Lights) ∆ Services Share Housing Quality

∆ ℓ 1.036 1.021 0.049
[0.113]∗∗∗ [1.218] [0.039]

∆ div -9.999 28.617 0.553
[1.632]∗∗∗ [17.441] [0.360]

Mean Dep. -2.49 5.01 -0.17
Observations 829 595 822

Panel B: Shift-Share IV

Log(Lights) ∆ Services Share Housing Quality

∆ ℓ 2.529 1.305 0.377
[0.228]∗∗∗ [1.892] [0.096]∗∗∗

∆ div -10.425 10.640 2.612
[2.979]∗∗∗ [4.442]∗∗ [0.850]∗∗∗

Mean Dep. -2.49 5.01 -0.17
Observations 829 595 822
Kleibergen-Paap Fstat 16.462 12.581 53.053
Sanderson-Windmeijer ℓ 245.593 161.907 183.079
Sanderson-Windmeijer div 27.686 23.125 27.438

Note: Panel A presents the OLS estimation of changes in migrant labor and diversity
on wealth and urbanization outcomes. yd,t = α∆ld,t + γ∆divd,t + υtc. Panel B
presents the IV 2SLS estimation of changes in migrant labor and diversity on wealth
and urbanization outcomes. Outcomes include the levels of logged light density, change
in the labor share in services, and the level of housing quality. All regressions include
country-year �xed e�ects. * p<0.01, ** p<0.05, *** p<0.01.

markets as urban or rural based on the local population density measured by Worldpop. We then

create a urban-rural price gap as the di�erence in prices for a crop-month across urban and rural

markets in the same country. We then estimate the following local projection. For crop c in state s

at month t we estimate:

Urban−Ruralcs,t+h = ωInternationalct + µs + γc + ϵcs,t+h (32)

Where Urban − Ruralcs,t+h is the MoM change in the urban-rural price di�erence in crop c at

horizon h months from t. The variable Internationalct captures the MoM change in the international

price of crop c at month t, and crop and state �xed e�ects are included. Figure B15 shows the result

of this projection over a 12 month horizon. We don't see evidence of a systematic e�ect of shocks to

MoM international price changes on crop speci�c urban-rural price di�erences.
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Table B4: Census Birthplace Shift-Share Second Stage, Migrant Flows

Shift-Share IV

∆ Industry HHI ∆ Avg. Human Capital ∆ Industry Segregation

∆ ℓ -0.038 -1.297 -1.919
[0.016]∗∗ [0.290]∗∗∗ [1.682]

∆ div -0.524 1.817 -1.329
[0.175]∗∗∗ [3.346] [6.515]

Mean Dep. -0.06 1.59 1.36
Observations 506 529 506
Kleibergen-Paap Fstat 12.380 4.334 12.380
Sanderson-Windmeijer ℓ 122.771 94.947 122.771
Sanderson-Windmeijer div 22.630 4.739 22.630

Note: This table presents the SSIV estimation of changes in migrant labor and diversity on skill and
industry concentration outcomes.. yd,t = α∆ld,t + γ∆divd,t + υtc. Industry concentration is measured
as the change in the labor share HHI across general industry categories such as construction, mineral
production, agriculture, manufacturing and retail trade. Segregation is a measure of the deviation from
random of the distribution of migrants from particular origins to particular industries. Human capital
changes are measured as the change in the average skill level of workers in a given destination over time,
measured in terms of schooling years. All regressions include country-year �xed e�ects. * p<0.01, **
p<0.05, *** p<0.01.

Table B5: Self-Reported Identity by Migrant Status and Distance

Within Ethnicity Within Destination Migrants Only

Nationalism Expectations Nationalism Expectations Nationalism Expectations

Migrant==1 0.166 0.188 0.201 0.089
[0.238] [0.131] [0.237] [0.096]

Migrant*Population -0.038 -0.016 -0.034 -0.018
[0.034] [0.016] [0.036] [0.016]

Migrant*Distance 0.011 -0.028 0.011 -0.006
[0.033] [0.020] [0.027] [0.020]

Migrant*CoethnicShare -0.054 0.051 -0.131 0.066
[0.086] [0.070] [0.087] [0.061]

ln(O-D Distance km) 0.038 0.014 0.026 0.002 0.046 -0.012
[0.026] [0.016] [0.021] [0.019] [0.028] [0.018]

ln(Population) 0.040 -0.008
[0.026] [0.025]

Coethnic Share 0.048 -0.074 0.104 -0.079 0.067 -0.014
[0.079] [0.089] [0.078] [0.053] [0.066] [0.052]

Mean Dep. Var 3.539 2.809 3.539 2.809 3.625 2.827
Observations 41,033 41,022 41,030 41,021 18,210 18,241
Destination FE N N Y Y Y Y
Ethnicity FE Y Y N N N N
Migrant Only N N N N Y Y

Notes: The data comes from Afrobarometer surveys, linking individuals to their origin based on reported ethnicity. The
outcomes of interest are national identity and economic expectations. National identiy, or �nationalism" is an individual's
response to a question about how much the individual identi�es with the nation relative to their ethnic group. Future
expectations is a question styled after the Michigan Consumer Con�dence Survey, which asks individuals if they expect
economic conditions to improve in the next year. All regressions include country-year �xed e�ects. Standard errors are
clustered at the Afrobarometer sampling cluster level. * p<0.01, ** p<0.05, *** p<0.01.
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Figure B1: First Stage Scatterplots in a Birthplace-Level Regression

(a) ∆ Lights (b) ∆ Log(Lights/Capita)

(c) ∆ Non-Agricultural Share (d) ∆ House Quality

Notes: This �gure shows binned scatterplots of birthplace-level treatment residuals against the birthplace-level shocks, organized
in 50 bins. The OLS lines of best �t is shown in red. The residualized procedure is accomplished using the method explained in
(Borusyak et al., 2022).
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Figure B3: Reduced Form Scatterplots in a Birthplace-Level Regression

(a) ∆ Lights (b) ∆ Log(Lights/Capita)

(c) ∆ Non-Agricultural Share (d) ∆ House Quality

Notes: This �gure shows binned scatterplots of birthplace-level treatment residuals against the birthplace-level shocks, organized
in 50 bins. The OLS lines of best �t is shown in red. The residualized procedure is accomplished using the method explained in
(Borusyak et al., 2022).

Figure B5: Standard Error Adjustments Following (Borusyak et al., 2022)

Notes: This �gure shows beta coe�cients and con�dence intervals for both the normal IV regression used in the main tables,
and the adjusted standard errors recommended by Borusyak and co-authors. The procedure is done separately for each light
outcome of interest. The treatment are in standardized units of the raw changes in migrant labor size.
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Figure B7: Balance at Baseline in Birthplace-Level Regressions

Notes: This �gure shows beta coe�cients from regressions of average residualized destination characteristics on birthplace
shocks. The baseline destination characteristics used are pre-period light density (measured in 1993, prior to treatment for
all groups), soild suitability, TseTse �y suitability, malaria suitability. Sources for these variables can be found in the data
section on �Pull Characteristics". The shocks are enumerated in raw population counts.

Table B6: OLS Cross-Section of Historical Diversity and Urban Density

Panel A: Urban Dummy

(1) (2) (3) (4)
Light Density Lights/Capita Growth Lights/Capita Con�ict

City 1.548 -0.465 -0.383 45.330
[0.017]∗∗∗ [0.047]∗∗∗ [0.056]∗∗∗ [2.153]∗∗∗

Diversity 0.043 -0.542 0.200 3.718
[0.023]∗ [0.065]∗∗∗ [0.079]∗∗ [3.006]

City*Diversity -0.720 0.460 0.030 3.560
[0.071]∗∗∗ [0.198]∗∗ [0.240] [9.159]

Mean Dep. -2.00 -9.96 -1.89 7.81
Observations 28,656 28,654 28,654 28,656

Panel B: Urban Population

Light Density Lights/Capita Growth Lights/Capita Con�ict

2010 Population 0.136 -0.864 -0.528 3.071
[0.002]∗∗∗ [0.002]∗∗∗ [0.006]∗∗∗ [0.265]∗∗∗

Diversity -0.478 -0.478 0.119 -33.902
[0.092]∗∗∗ [0.092]∗∗∗ [0.250] [10.852]∗∗∗

Population*Diversity 0.043 0.043 0.037 4.164
[0.010]∗∗∗ [0.010]∗∗∗ [0.028] [1.196]∗∗∗

Mean Dep. -2.00 -9.96 -1.89 7.81
Observations 28,654 28,654 28,654 28,654

Notes: This table presents cross-sectional regressions of urban growth and the interaction of urban
growth and historical diversity on contemporary productivity outcomes. All regressions include state
�xed e�ects. Light density outcomes are calculated in 2013, for comparison to Montalvo and Reynal-
Querol (2021). Column 1 measures log light density, column 2 is a log measure of light density over a
Worldpop estimated population for the grid in 2010, column 3 measures the change in log lights/capita
from 1992 to 2013. Column 4 measures the number of con�ict events in the grid since 1997, measured
in ACLED battle events. �City" in Panel A is an indicator marked as 1 if an Africapolis city is
located within the grid and the population is above 20,000. In Panel B, this term is replaced by
a log population estimate for 2010 from Worldpop. �Diversity" is a historical measure of diversity
calculated as the fractionalization of land share of di�erent Murdock ethnic groups in the grid cell.
All regressions control for distance to coast, malaria and TseTse suitability, ruggedness, distance to
a major river, agricultural land productivity and a historical estimate of population size in 1800. *
p<0.01, ** p<0.05, *** p<0.01.
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Figure B9: Conley Spatial Standard Errors for Labor Size Coe�cient ∆ℓ

Notes: This �gure plots the results of IV regressions of the main estimating equation where standard errors account for spatial
autocorrelation. In particular the �gure plots conley standard errors for the migrant labor size coe�cient with di�erent bounds
on the decay of spatial autocorrelation.
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Figure B10: Conley Spatial Standard Errors for Migrant Diversity Coe�cient ∆div

Notes: This �gure plots the results of IV regressions of the main estimating equation where standard errors account for spatial
autocorrelation. In particular the �gure plots conley standard errors for the diversity coe�cient with di�erent bounds on the decay
of spatial autocorrelation.
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Figure B11: Estimates with Individual Country Drops for Labor Size Coe�cient ∆ℓ

Notes: This �gure plots the results of IV regressions of the main estimating equation where individual countries are dropped from
the sample. This �gure shows results for the migrant labor size coe�cient.
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Figure B12: Estimates with Individual Country Drops for Migrant Diversity Coe�cient ∆div

Notes: This �gure plots the results of IV regressions of the main estimating equation where individual countries are dropped from
the sample. This �gure shows results for the migrant diversity coe�cient.
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Figure B13: Placebo Shocks for Labor Size Coe�cient ∆ℓ

Notes: This �gure plots the results of IV regressions of the main estimating equation where got is replaced with randomly drawn
shocks. This �gure shows results for the migrant labor size coe�cient. The x-axis tracks individual draws of the placebo shocks.
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Figure B14: Placebo Shocks for Migrant Diversity Coe�cient ∆div

Notes: This �gure plots the results of IV regressions of the main estimating equation where got is replaced with randomly drawn
shocks. This �gure shows results for the diversity coe�cient. The x-axis tracks individual draws of the placebo shocks.

Figure B15: IRF of International Prices on Local Urban/Rural Gap

Notes: This �gure shows the results of a local project estimating the e�ect of an international price shock on the urban-rural
price gap for the same commodity across African markets.
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